Cho hình tứ diện ABCD.
a) Chứng minh hệ thức:
\(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = 0\)
b) Từ hệ thức trên hãy suy ra định lí: “Nếu một hình tứ diện có hai cặp cạnh đối diện vuông góc với nhau thì cặp cạnh đối diện thứ ba cũng vuông góc với nhau.”
Hướng dẫn làm bài:
a) Ta có
\(\overrightarrow {AB} .\overrightarrow {CD} = \overrightarrow {AB} (\overrightarrow {AD} - \overrightarrow {AC} ) = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AC} \) (1)
\(\overrightarrow {AC} .\overrightarrow {DB} = \overrightarrow {AC} (\overrightarrow {AB} - \overrightarrow {AD} ) = \overrightarrow {AC} .\overrightarrow {AB} - \overrightarrow {AC} .\overrightarrow {AD} \) (2)
\(\overrightarrow {AD} .\overrightarrow {BC} = \overrightarrow {AD} (\overrightarrow {AC} - \overrightarrow {AB} ) = \overrightarrow {AD} .\overrightarrow {AC} - \overrightarrow {AD} .\overrightarrow {AB} \) (3)
Lấy (1) + (2) + (3) ta có hệ thức cần chứng minh là:
\(\overrightarrow {AB} .\overrightarrow {CD} + \overrightarrow {AC} .\overrightarrow {DB} + \overrightarrow {AD} .\overrightarrow {BC} = 0\)
b) Từ hệ thức trên ta suy ra định lí: “Nếu tứ diện ABCD có \(AB \bot CD,AC \bot DB\) , nghĩa là \(\overrightarrow {AB} .\overrightarrow {CD} = 0\) và \(\overrightarrow {AC} .\overrightarrow {DB} = 0\) thì \(\overrightarrow {AD} .\overrightarrow {BC} = 0\) và do đó \(AD \bot BC\) .”
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục