Khối chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh C và \(SA \bot \left( {ABC} \right),SC = a.\) Hãy tìm góc giữa hai mặt phẳng \(\left( {SCB} \right)\)và \(\left( {ABC} \right)\) để thể tích khối chóp là lớn nhất.
Giải
Ta có \(BC \bot AC\) nên \(BC \bot SC\) (định lý ba đường vuông góc), suy ra góc \(SCA\) là góc giữa hai mặt phẳng \(\left( {SCB} \right)\) và \(\left( {ABC} \right)\). Đặt \(\widehat {SCA} = x\left( {0 < x < {\pi \over 2}} \right)\)
Khi đó :
\(\eqalign{ & SA = a{\mathop{\rm s}\nolimits} {\rm{inx}},AC = acosx. \cr & {V_{S.ABC}} = {{a{\mathop{\rm s}\nolimits} {\rm{inx}}} \over 3}.{{{a^2}{\rm{co}}{{\rm{s}}^2}x} \over 2} = {{{a^3}} \over 6}{\mathop{\rm s}\nolimits} {\rm{in}x}.co{s^2}x. \cr} \)
Xét hàm số \(y\left( x \right) = \sin {\rm{x}}{\cos ^2}x.\)
Ta có :
\(\eqalign{ y'\left( x \right) &= co{s^3}x - 2{\mathop{\rm cosx}\nolimits} .s{\rm{i}}{{\rm{n}}^2}{\rm{x }}\cr&= \cos x\left( {co{s^2}x - 2 + 2co{s^2}x} \right) \cr & = cosx\left( {3{{\cos }^2}x - 2} \right) \cr&= 3{\mathop{\rm cosx}\nolimits} \left( {{\mathop{\rm cosx}\nolimits} - \sqrt {{2 \over 3}} } \right)\left( {\cos x + \sqrt {{2 \over 3}} } \right). \cr} \)
Vì \(0 < x < {\pi \over 2}\) nên \(\cos x\left( {{\mathop{\rm cosx}\nolimits} + \sqrt {{2 \over 3}} } \right) > 0.\)
Gọi \(\alpha \) là góc sao cho \(\cos \alpha = \sqrt {{2 \over 3}} ,0 < \alpha < {\pi \over 2}.\)
Ta có bảng biến thiên của hàm \(y\left( x \right) = {\mathop{\rm s}\nolimits} {\rm{inx}}.{\cos ^2}x:\)
Vậy VS.ABC đạt giá trị lớn nhất khi \(x = \alpha \) với \(0 < \alpha < {\pi \over 2}\)và \(\cos \alpha = \sqrt {{2 \over 3}} .\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục