Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.58 trang 132 sách bài tập (SBT) – Hình học 12

Bình chọn:
4 trên 2 phiếu

Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau (P) Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0

Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau

(P) Ax + By + Cz + D = 0  và (Q): A’x + B’y + C’z + D’ = 0

Hướng dẫn làm bài:

Do (P) và (Q) cắt nhau nên \(\overrightarrow {{n_P}}  \wedge \overrightarrow {{n_Q}}  \ne \overrightarrow 0 \) . Đường thẳng d đi qua M0và có vecto chỉ phương 

\(\overrightarrow {{n_P}} \wedge \overrightarrow {{n_Q}} = (\left| {\matrix{{\matrix{B \cr {B'} \cr} } & {\matrix{C \cr {C'} \cr} } \cr} } \right|;\left| {\matrix{{\matrix{C \cr {C'} \cr} } & {\matrix{A \cr {A'} \cr} } \cr} } \right|;\left| {\matrix{{\matrix{A \cr {A'} \cr} } & {\matrix{B \cr {B'} \cr}} \cr} } \right|)\)

Do đó phương trình tham số của d là: \(\left\{ {\matrix{{x = {x_0} + \left| {\matrix{{\matrix{B \cr {B'} \cr} } & {\matrix{C \cr {C'} \cr} } \cr} } \right|t} \cr {y = {y_0} + \left| {\matrix{{\matrix{C \cr {C'} \cr} } & {\matrix{A \cr {A'} \cr} } \cr} } \right|t} \cr {z = {z_0} + \left| {\matrix{{\matrix{A \cr {A'} \cr} } & {\matrix{B \cr {B'} \cr} } \cr} } \right|t} \cr} } \right.\)

Đặc biệt phương trình trên cũng là phương trình đường thẳng là giao của hai mặt phẳng cắt nhau (P): Ax + By + Cz + D = 0   và  (Q): A’x + B’y + C’z + D’ = 0  với M0 là điểm chung của (P) và (Q).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan