Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 36, 37, 38 trang 82 SGK Toán 9 tập 2 - Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn

Bình chọn:
4.9 trên 7 phiếu

Giải bài 36, 37, 38 trang 82 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn. Bài 37 Cho đường tròn (O) và hai dây AB, AC bằng nhau. Trên cung nhỏ AC lấy một điểm M. Gọi S là giao điểm của AM và BC.

Bài 36 trang 82 SGK Toán lớp 9 tập 2

Câu hỏi:

Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\). Gọi \(M, N\) lần lượt là điểm chính giữa của cung \(AB\) và cung \(AC\). Đường thẳng \(MN\) cắt dây \(AB\) tại \(E\) và cắt dây \(AC\) tại \(H\). Chứng minh rằng tam giác \(AEH\) là tam giác cân.

Lời giải:         

 

Xét đường tròn (O):

Vì  \(\widehat {AHM}\) là góc có đỉnh bên trong đường tròn chắn các cung \(AM\) và cung \(NC\) nên \(\widehat {AHM}\)= \(\dfrac{sđ\overparen{AM}+sđ\overparen{NC}}{2}\,\,\, (1)\)   

Vì  \(\widehat {AEN}\) là góc có đỉnh bên trong đường tròn chắn các cung \(AN\) và cung \( MB\) nên \(\widehat {AEN}\)= \(\dfrac{sđ\overparen{MB}+sđ\overparen{AN}}{2}\,\,\,  (2)\)       

Ta có:

\(\overparen{AM}=\overparen{MB}   (3)\) (\(M\) là điểm chính giữa cung \(AB\)).

\(\overparen{NC}=\overparen{AN}    (4)\)  \(N\) là điểm chính giữa cung \(AC\)).

Từ (1),(2), (3), (4), suy ra \(\widehat {AHM}= \widehat {AEN}\). Do đó \(∆AEH\) cân tại A                          

Bài 37 trang 82 SGK Toán lớp 9 tập 2

Câu hỏi:

Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\) bằng nhau. Trên cung nhỏ \(AC\) lấy một điểm \(M\). Gọi \(S\) là giao điểm của \(AM\) và \(BC\). Chứng minh: \(\widehat {ASC} = \widehat {MCA}.\)

Phương pháp: 

+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn. 

Lời giải:

 Xét đường tròn \((O)\), ta có:

\(\widehat{ASC}\) là góc có đỉnh ở ngoài đường tròn chắn cung \(MC\) và \(AB.\)

\(\Rightarrow \widehat{ASC} = \dfrac{sđ \overparen{AB}- sđ \overparen{MC}}{2}\) (1)

và \(\widehat {MCA}\) = \(\dfrac{sđ\overparen{AM}}{2}\)   (2) (góc nội tiếp chắn cung \(\overparen{AM}\))

Theo giả thiết thì: \(AB = AC => \overparen{AB}=\overparen{AC}\)  (hai dây bằng nhau căng hai cung bằng nhau).  

\(\Rightarrow sđ\overparen{AB}-sđ\overparen{MC}=sđ\overparen{AC}-sđ\overparen{MC}=sđ\overparen{AM}\)  (3)

Từ (1), (2), (3) suy ra: \(\widehat {ASC}=\widehat {MCA}.\) (đpcm)

Bài 38 trang 82 SGK Toán lớp 9 tập 2

Câu hỏi:

Trên một đường tròn, lấy liên tiếp ba cung \(AC, CD, DB\) sao cho

\(sđ\overparen{AC}=sđ\overparen{CD}=sđ\overparen{DB}=60^0\). Hai đường thẳng \(AC\) và \(BD\) cắt nhau tại \(E\). Hai tiếp tuyến của đường tròn tại \(B\) và \(C\) cắt nhau tại \(T\). Chứng minh rằng:

a) \(\widehat {AEB}=\widehat {BTC}\);

b) \(CD\) là phân giác của \(\widehat{BCT}.\)

Phương pháp:

+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

+) Số đo góc nội tếp bằng nửa số đo cung bị chắn

Lời giải:

a) Xét đường tròn \((O)\) có \(sđ\overparen{AC}=sđ\overparen{CD}=sđ\overparen{DB}=60^0\) nên \(sđ\overparen{AB}=sđ\overparen{AC}+sđ\overparen{CD}+sđ\overparen{DB}\)\(=60^0+60^0+60^0=180^0.\)

Ta có \(\widehat{AEB}\) là góc có đỉnh ở bên ngoài đường tròn chắn cung \(CD\) và \(AB\) nên:

\(\displaystyle \widehat{AEB}=\dfrac{sđ\overparen{AB}- sđ\overparen{CD}}{2}={{{{180}^0 - {{60}^0}}} \over 2} = {60^0}.\)  

và \(\widehat{BTC}\)  cũng là góc có đỉnh ở bên ngoài đường tròn chắn cung \(BC\) lớn và \(BC\) nhỏ (hai cạnh đều là tiếp tuyến của đường tròn) nên:

\(\widehat{BTC}=\dfrac{sđ\overparen {BAC}-sđ\overparen{BDC}}{2}\)\(\displaystyle = {{({{180}^0} + {{60}^0}) - ({{60}^0} + {{60}^0})} \over 2} = {60^0}.\)  

 Vậy \(\widehat {AEB} =\widehat {BTC}=60^0.\) 

b) Xét đường tròn \((O)\) có:

\(\widehat {DCT} \) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(CD\) nên:

 \(\widehat {DCT}=\dfrac{sđ\overparen{CD}}{2}=\dfrac{60^0}{2}=30^0.\)

\(\widehat {DCB}\) là góc nội tiếp chắn cung \(BD\) nên: \(\displaystyle \widehat {DCB}=\dfrac{sđ\overparen{DB}}{2}={{{{60}^0}} \over 2} = {30^0}.\)

Vậy  \(\widehat {DCT}=\widehat {DCB}=30^0\) \(= \dfrac{1}{2}\). \(\widehat {BCT}\)hay  \(CD\) là phân giác của \(\widehat {BCT}. \)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan