Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.8 trang 36 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4.3 trên 3 phiếu

Giải phương trình

Giải phương trình

\(\cot x - \tan x + 4\sin 2x = {2 \over {\sin 2x}}\)

Giải

Hướng dẫn: Đối với những phương trình lượng giác chứa tanx, cotx, sin2x hoặc cos2x, ta có thể đưa về phương trình chứa cosx, sinx, sin2x, hoặc cos2x ngoài ra cũng có thể đặt ẩn phụ t = tanx để đưa về một phương trình theo t.

Cách 1: Điều kiện của phương trình:

\(\sin 2x \ne 0 \Leftrightarrow \cos 2x \ne  \pm 1{\rm{       }}\left( 1 \right)\)

Ta có:

\(\eqalign{
& \cot x - \tan x + 4\sin 2x = {2 \over {\sin 2x}} \cr
& \Leftrightarrow {{\cos x} \over {\sin x}} - {{\sin x} \over {\cos x}} + 4\sin 2x - {2 \over {\sin 2x}} = 0 \cr
& \Leftrightarrow {{{{\cos }^2}x - {{\sin }^2}x} \over {\sin x.\cos x}} + 4\sin 2x - {2 \over {\sin 2x}} = 0 \cr
& \Leftrightarrow {{2\cos 2x} \over {\sin 2x}} + 4\sin 2x - {2 \over {\sin 2x}} = 0 \cr
& \Leftrightarrow 2\cos 2x + 4{\sin ^2}2x - 2 = 0 \cr
& \Leftrightarrow \cos 2x + 2\left( {1 - {{\cos }^2}2x} \right) - 1 = 0 \cr
& \Leftrightarrow 2{\cos ^2}2x - \cos 2x - 1 = 0 \cr
& \Leftrightarrow \left[ \matrix{
\cos 2x = 1{\rm{ (loại)}} \hfill \cr
\cos 2x = - {1 \over 2} \hfill \cr} \right. \cr
& \Leftrightarrow 2x = \pm {{2\pi } \over 3} + k2\pi ,k \in Z \cr
& \Leftrightarrow x = \pm {\pi \over 3} + k\pi ,k \in Z \cr} \)

Cách 2. Đặt t = tanx

Điều kiện t ≠ 0

Phương trình đã cho có dạng

\(\eqalign{
& {1 \over t} - t + 4.{{2t} \over {1 + {t^2}}} = {{1 + {t^2}} \over t} \cr
& \Leftrightarrow {{1 - {t^2}} \over t} + {{8t} \over {1 + {t^2}}} - {{1 + {t^2}} \over t} = 0 \cr
& \Leftrightarrow 1 - {t^4} + 8{t^2} - {\left( {1 + {t^2}} \right)^2} = 0 \cr
& \Leftrightarrow - 2{t^4} + 8{t^2} - 2{t^2} = 0 \cr
& \Leftrightarrow {t^4} - 3{t^2} = 0 \cr
& \Rightarrow {t^2}\left( {{t^3} - 3} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
t = 0{\rm{ }}\left( {{\rm{loại \,\, do}}\left( 2 \right)} \right) \hfill \cr
t = \pm \sqrt 3 \hfill \cr} \right. \cr
& \tan x = \pm \sqrt 3 \Leftrightarrow x = \pm {\pi \over 3} + k\pi ,k \in Z \cr} \)

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan