Bài 4 trang 36 SGK Toán lớp 9 tập 2
Câu hỏi:
Cho hai hàm số: \(y = \dfrac{3}{2}{x^2},y = - \dfrac{3}{2}{x^2}\). Điền vào những ô trống của các bảng sau rồi vẽ hai đồ thị trên cùng một mặt phẳng tọa độ.
Nhận xét về tính đối xứng của hai đồ thị đối với trục \(Ox\).
Lời giải:
Thực hiện phép tính sau:
+) Đối với hàm số \(y=\dfrac{3}{2}x^2\):
\(x=-2 \Rightarrow y=\dfrac{3}{2}.(-2)^2=\dfrac{3}{2}.4=6\).
\(x=-1 \Rightarrow y=\dfrac{3}{2}.(-1)^2=\dfrac{3}{2}.1=\dfrac{3}{2}\).
\(x=0 \Rightarrow y=\dfrac{3}{2}.0=0\).
\(x=1 \Rightarrow y=\dfrac{3}{2}.1^2=\dfrac{3}{2}\).
\(x=2 \Rightarrow y=\dfrac{3}{2}.2^2=\dfrac{3}{2}.4=6\)
+) Đối với hàm số \(y=-\dfrac{3}{2}x^2\):
\(x=-2 \Rightarrow y=-\dfrac{3}{2}.(-2)^2=-\dfrac{3}{2}.4=-6\).
\(x=-1 \Rightarrow y=-\dfrac{3}{2}.(-1)^2=-\dfrac{3}{2}.1=-\dfrac{3}{2}\).
\(x=0 \Rightarrow y=-\dfrac{3}{2}.0=0\).
\(x=1 \Rightarrow y=-\dfrac{3}{2}.1^2=-\dfrac{3}{2}\).
\(x=2 \Rightarrow y=-\dfrac{3}{2}.2^2=-\dfrac{3}{2}.4=-6\)
Ta được bảng sau:
Vẽ đồ thị:
+) Vẽ đồ thị hàm số \(y=\dfrac{3}{2}x^2\)
Quan sát bảng trên ta thấy đồ thị đi qua các điểm:
\(A(-2; 6);\ B{\left(-1; \dfrac{3}{2}\right)};\ O(0; 0);\ C{\left(1; \dfrac{3}{2}\right)};\ D(2; 6)\)
+) Vẽ đồ thị hàm số \(y=-\dfrac{3}{2}x^2\)
Quan sát bảng trên ta thấy đồ thị đi qua các điểm:
\(A'(-2; -6);\ B'{\left(-1; -\dfrac{3}{2}\right)};\ O(0; 0);\)
\(\ C'{\left(1; -\dfrac{3}{2}\right)};\ D'(2; -6)\)
Nhận xét: Đồ thị của hai hàm số đối xứng với nhau qua trục \(Ox\).
Bài 5 trang 37 SGK Toán lớp 9 tập 2
Câu hỏi:
Cho ba hàm số:
\(y = \dfrac{1}{2}{x^2};\ y = {x^2};\ y = 2{x^2}\).
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm \(A,\ B,\ C\) có cùng hoành độ \(x = -1,5\) theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm \(A',\ B',\ C'\) có cùng hoành độ \(x = 1,5\) theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\).
d) Với mỗi hàm số trên, hãy tìm giá trị của \(x\) để hàm số đó có giá trị nhỏ nhất.
Lời giải:
a) Bảng giá trị tương ứng của x và y:
Vẽ đồ thị:
Trên mặt phẳng lưới lấy các điểm (-2; 2); (-1; ½); (0; 0); (1; 1/2); (2; 2), nối chúng thành một đường cong ta được đồ thị hàm số y = ½.x2.
Lấy các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4), nối chúng thành một đường cong ta được đồ thị hàm số y = x2.
Lấy các điểm (-2; 8); (-1; 2); (0; 0); (1; 2); (2; 8), nối chúng thành một đường cong ta được đồ thị hàm số y = 2x2.
b)
Xác định điểm P trên trục Ox có hoành độ \(x = - 1,5\). Qua P kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A;B;C\)
Gọi \({y_A},{y_B},{y_C}\) lần lượt là tung độ các điểm \(A,\ B,\ C\). Ta có:
\(\eqalign{
& {y_A} = {1 \over 2}{( - 1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_B} = {( - 1,5)^2} = 2,25 \cr
& {y_C} = 2{( - 1.5)^2} = 2.2,25 = 4,5 \cr} \)
c) Xác định điểm \(P'\) trên trục Ox có hoành độ \(x = 1,5\). Qua \(P'\) kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A';B';C'\)
Gọi \({y_{A'}},{y_{B'}},{y_{C'}}\) lần lượt là tung độ các điểm \(A', B', C'\) . Ta có:
\(\eqalign{
& {y_{A'}} = {1 \over 2}{(1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_{B'}} = {(1,5)^2} = 2,25 \cr
& {y_{C'}} = 2{(1.5)^2} = 2.2,25 = 4,5 \cr} \)
Kiểm tra tính đối xứng: \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\) đối xứng với nhau qua trục tung \(Oy\).
d) Với mỗi hàm số đã cho ta đều có hệ số \(a > 0\) nên O là điểm thấp nhất của đồ thị.
Vậy với \(x = 0\) thì các hàm số trên đều có giá trị nhỏ nhất \(y=0.\)
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục