Đường cao của hình nón gấp hai lần bán kính đáy của nó. Tính tỉ số thể tích hình cầu ngoại tiếp và nội tiếp hình nón đó.
Giải
Xét mp(P) qua trục SO của hình nón thì (P) cắt hình nón theo tam giác cân SAB, (P) cắt mặt cầu ngoại tiếp và nội tiếp hình nón theo các đường tròn có bán kính lần lượt là R và r. Các đường tròn này ngoại tiếp và nội tiếp tam giác cân SAB.
Kí hiệu V1,V2 là thể tích của các hình cầu đã nêu thì V1V2=(Rr)3.
Đặt ^SAB =α và gọi I là tâm đường tròn nội tiếp ΔSAB thì
2R= ABsin^ASB=ABsin2α và r=IO=AB2tanα2.
Từ đó Rr=1sin2αtanα2.
Mặt khác tanα=SOAO=2, vậy
sin2α=2tanα1+tan2α=45;2=tanα=2tanα21−tan2α2⇒tanα2=√5−12
( do tanα2>0).
Như vậy Rr=5(√5+1)8, tức là V1V2=125(√5+1)3512
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục