Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 49 trang 126 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho hình hộp chữ nhật ABCD.A’B’C’D’

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có A(0;0;0), B(a;0;0), D(0;a;0), A’(0;0;b) với a, b là những số dương và M là trung điểm của CC’.

a) Tính thể tích của tứ diện BDA’M.

b) Tìm tỉ số \({a \over b}\) để mp(A’BD) vuông góc với mp(MBD).

Giải

a)

Từ giả thiết ta có C=(a;a;0).

\(C' = (a;a;b) \Rightarrow M = \left( {a;a;{b \over 2}} \right)\)

Ta có \(\overrightarrow {BD}  = \left( { - a;a;0} \right);\)

\(\overrightarrow {BM}  = \left( {0;a;{b \over 2}} \right);\,\,\overrightarrow {BA'}  = \left( { - a;0;b} \right)\)

\( \Rightarrow \left( {\left[ {\overrightarrow {BD} ,\overrightarrow {BM} } \right]} \right) = \left( {{{ab} \over 2};{{ab} \over 2}; - {a^2}} \right)\)

Vậy \({V_{BDA'M}} = {1 \over 6}\left| {\left[ {\overrightarrow {BD} ,\overrightarrow {BM} } \right].\overrightarrow {BA'} } \right| = {{{a^2}b} \over 4}.\)

b) Mặt phẳng (A’BD) có vec tơ pháp tuyến

\(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {BD} ,\overrightarrow {BA'} } \right] = (ab;ab;{a^2}).\)

Mặt phẳng (MBD) có vectơ pháp tuyến

\(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {BD} ,\overrightarrow {BM} } \right] = ({{ab} \over 2};{{ab} \over 2}; - {a^2}).\)

Vì vậy

\(\eqalign{  & \left( {MBD} \right) \bot (A'BD) \Leftrightarrow \overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0  \cr  &  \Leftrightarrow {{{a^2}{b^2}} \over 2} + {{{a^2}{b^2}} \over 2} - {a^4} = 0  \cr  &  \Leftrightarrow {a^2}{b^2} = {a^4} \Leftrightarrow {a^2} = {b^2} \Leftrightarrow a = b \Leftrightarrow {a \over b} = 1.  \cr  &  \cr} \)

(do \(a > 0,b > 0).\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan