Tìm tất cả các mặt phẳng đối xứng của hình tứ diện đều ABCD.
Giải
Giả sử \(\left( \alpha \right)\) là mặt phẳng đối xứng của tứ diện đều ABCD, tức là phép đối xứng qua \(mp\left( \alpha \right)\), kí hiệu \({D_\alpha }\), biến tập thể \(\left\{ {A,B,C,D} \right\}\)thành chính nó. Vì \({D_\alpha }\) không thể biến mỗi đỉnh thành chính nó ( vì khi đó \({D_\alpha }\) là phép đồng nhất ) nên phải có một đỉnh, chẳng hạn A , biến thành một đỉnh khác, chẳng hạn B. Khi đó, \(\left( \alpha \right)\) là mặt phẳng trung trực của đoạn thẳng AB ( hiển nhiên \(\left( \alpha \right)\) đi qua C và D).
Như vậy, tứ diện đều ABCD có 6 mặt phẳng đối xứng, đó là các mặt phẳng trung trực của các cạnh.
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục