Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài tập trắc nghiệm trang 187, 188 Sách bài tập (SBT) Giải tích 12

Bình chọn:
4.3 trên 3 phiếu

3. Tìm khẳng định sai trong các khẳng định sau:

1. Hàm số nào dưới đây không là nguyên hàm của hàm số  \(f\left( x \right) = {{x\left( {2 + x} \right)} \over {{{\left( {x + 1} \right)}^2}}}?\)

A. \({{{x^2} + x - 1} \over {x + 1}}\)                                      B. \({{{x^2} - x - 1} \over {x + 1}}\) 

C. \({{{x^2} + x + 1} \over {x + 1}}\)                                      D. \({{{x^2}} \over {x + 1}}\) 

2. Nếu \(\int\limits_a^d {f\left( x \right)dx = 5,\,\,\int\limits_b^d {f\left( x \right)dx = 2} } \) với a < d < b thì \(\int\limits_a^b {f\left( x \right)dx} \) bằng:

A. -2                       B. 8                        C. 0                         D. 3

3. Tìm khẳng định sai trong các khẳng định sau:

A. \(\int\limits_0^1 {\sin \left( {1 - x} \right)dx = \int\limits_0^1 {\sin xdx} }\)  

B. \(\int\limits_0^\pi  {\sin {x \over 2}} dx = 2\int\limits_0^{{\pi  \over 2}} {\sin xdx} \) 

C. \(\int\limits_0^1 {{{\left( {1 + x} \right)}^x}dx = 0} \) 

D. \(\int\limits_{ - 1}^1 {{x^{2007}}\left( {1 + x} \right)dx = {2 \over {2009}}} \) 

4. Tìm khẳng định đúng trong các khẳng định sau:

A. \(\int\limits_0^\pi  {\left| {\sin \left( {x + {\pi  \over 4}} \right)} \right|} dx = \int\limits_0^{{\pi  \over 4}} {\left| {\sin \left( {x - {\pi  \over 4}} \right)} \right|} dx\) 

B. \(\int\limits_0^\pi  {\left| {\sin \left( {x + {\pi  \over 4}} \right)} \right|} dx = \int\limits_0^\pi  {\cos \left( {x + {\pi  \over 4}} \right)} dx\) 

C. \(\int\limits_0^\pi  {\left| {\sin \left( {x + {\pi  \over 4}} \right)} \right|} dx = \int\limits_0^{{{3\pi } \over 4}} {\sin \left( {x + {\pi  \over 4}} \right)dx - \int\limits_{{{3\pi } \over 4}}^\pi  {\sin \left( {x + {\pi  \over 4}} \right)} } dx\) 

D. \(\int\limits_0^\pi  {\left| {\sin \left( {x + {\pi  \over 4}} \right)} \right|} dx = 2\int\limits_0^{{\pi  \over 4}} {\sin \left( {x + {\pi  \over 4}} \right)} dx\) 

5. \(\int\limits_0^1 {x{e^{1 - x}}dx} \) bằng:

A. 1 – e                 B. e – 2                 C. 1                         D. -1

6. Nhờ ý nghĩa hình học của tích phân, hãy tìm khẳng định sai trong các khẳng định sau:

A. \(\int\limits_0^1 {\ln \left( {1 + x} \right)} dx > \int\limits_0^1 {{{x - 1} \over {e - 1}}} dx\) 

B. \(\int\limits_0^{{\pi  \over 4}} {{{\sin }^2}xdx < \int\limits_0^{{\pi  \over 4}} {\sin 2xdx} } \)  

C. \({\int\limits_0^1 {{e^{ - x}}dx > \int\limits_0^1 {\left( {{{1 - x} \over {1 + x}}} \right)} } ^2}dx\) 

D. \(\int\limits_0^1 {{e^{ - {x^2}}}dx > \int\limits_0^1 {{e^{ - {x^3}}}dx} } \) 

7. Thể tích của khối tròn xoay tạo nên do quay xung quanh trục Ox hình phẳng giới hạn bởi các đường \(y = {\left( {1 - x} \right)^2},\,y = 0,\,x = 0\) và x = 2 bằng:

A. \({{8\pi \sqrt 2 } \over 3}\)                                            B. \({{2\pi } \over 5}\) 

C. \({{5\pi } \over 2}\)                                                D. \(2\pi \) 

Hướng dẫn làm bài:

1. Chọn A

B, C, D đúng. Chỉ kiểm tra D đúng còn B và C sai khác với D hằng số ∓1

2. Chọn D

Nhờ tính chất của tích phân \(\int\limits_a^b {f\left( x \right)dx = \int\limits_a^d {f\left( x \right)dx + } } \int\limits_d^b {f\left( x \right)dx} \) .

3. Chọn C

Do \({\left( {1 + x} \right)^x} \ge 1,\,\forall x \in \left[ {0;1} \right]\) nên nhờ ý nghĩa hình học của tích phân, ta có \(\int\limits_0^1 {{{\left( {1 + x} \right)}^x}dx > 0} \) 

4. Chọn C.

Vì \(\sin \left( {x + {\pi  \over 4}} \right) \ge 0\) với \(x \in \left[ {0;{{3\pi } \over 4}} \right]\) và \(\sin \left( {x + {\pi  \over 4}} \right) \le 0\) với \(x \in \left[ {{{3\pi } \over 4};\pi } \right]\).

5. Chọn B

A và D sai vì \(\int\limits_0^1 {x{e^{1 - x}}dx \ge 0} \). Nhờ tích phân từng phần, ta được B đúng và C sai.

6. Chọn D

7. Chọn B

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan