Tìm cực trị của các hàm số sau:
a) \(f(x) = {{{x^2} + 8x - 24} \over {{x^2} - 4}}\)
b) \(f(x) = {x \over {{x^2} + 4}}\)
c) \(f(x) = x\sqrt {3 - x} \)
d) \(f(x) = {x^2} - 2\left| x \right| + 2\)
Giải
a) Hàm số đạt cực đại tại điểm x = 1; f(1) = 5 và đạt cực tiểu tại điểm x = 4; f(4) = 2
b) Hàm số đạt cực đại tại điểm \(x = - 2;{\rm{ }}f\left( { - 2} \right) = - {1 \over 4}\) và đạt cực tiểu tại điểm \(x = 2;{\rm{ }}f\left( 2 \right) = {1 \over 4}\)
c) Hàm số đạt cực tiểu tại các điểm x = 2; f(2) = 2
d) Hàm số liên tục trên R
\(f(x) = \left\{ \matrix{{x^2} + 2x + 2;x < 0 \hfill \cr {x^2} - 2x + 2;x \ge 0 \hfill \cr} \right.\)
\(f'(x) = \left\{ \matrix{2x + 2;x < 0 \hfill \cr 2x - 2;x > 0 \hfill \cr} \right.\)
\(f'(x) = 0 \Leftrightarrow x = - 1,x = 1\)
Bảng biến thiên
Hàm số đạt cực đại tại điểm \(x = 0,f(0) = 2\) và đạt cực tiểu tại các điểm x = -1 và x = 1; \(f( - 1) = f(1) = 1\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục