Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.118 trang 89 sách bài tập Giải tích 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải các hệ phương trình sau

a) \(\left\{ \matrix{9{x^2} - 4{y^2} = 5 \hfill \cr{\log _5}\left( {3x + 2y} \right) - {\log _3}\left( {3x - 2y} \right) = 1 \hfill \cr}  \right.\)                    

b) \(\left\{ \matrix{{5^{\ln x}} = {6^{\ln y}}  \hfill \cr{\left( {6x} \right)^{\ln 6}} = {\left( {5y} \right)^{\ln 5}} \hfill \cr}  \right.\)

Giải

a) ĐKXĐ: \(3x \pm 2y > 0\)

Lôgarit cơ số 5 hai vế của phương trình đầu ta được

\({\log _5}\left( {3x + 2y} \right) - {\log _5}\left( {3x - 2y} \right) = 1\)

Biến đổi phương trình thứ hai thành \({\log _5}\left( {3x + 2y} \right) - {{{{\log }_5}\left( {3x - 2y} \right)} \over {{{\log }_5}3}} = 1\)

Sau đó đặt \({\log _5}\left( {3x + 2y} \right) = u;{\log _5}\left( {3x - 2y} \right) = v\)

\(\left( {u > 0,v > 0} \right)\) dẫn đến hệ

                                \(\left\{ \matrix{u - v = 1 \hfill \cr u - {v \over {{{\log }_5}3}} = 1 \hfill \cr}  \right.\)

Ta tìm được: v=0, u=1

Vậy \(\left( {x;y} \right) = \left( {1;1} \right)\)

b) Điều kiện \(x > 0,y > 0\)

Lôgarit cơ số e hai vế của  cả hai  phương trình của hệ dẫn đến

\(\left\{ \matrix{\ln x\ln 5 = \ln y\ln 6 \hfill \cr\ln 6\left( {\ln 6 + \ln x} \right) = \ln 5\left( {\ln 5 + \ln y} \right) \hfill \cr}  \right.\)

Giải hệ ta được: \(\left( {x;y} \right) = \left( {{1 \over 6};{1 \over 5}} \right)\)

Sachbaitap.com

 

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan