Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 2.120 trang 89 sách bài tập Giải tích 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Tìm điều kiện của m để mỗi hàm số sau xác định với mọi x:

Tìm điều kiện của m để mỗi hàm số sau xác định với mọi x:

a) \(y = {\log _5}\left( {{x^2} - mx + m + 2} \right)\)  

b) \(y = {1 \over {\sqrt {{{\log }_3}\left( {{x^2} - 2x + 3m} \right)} }}\)                                           

c) \(y = {\log _2}{\log _3}\left[ {\left( {m - 2} \right){x^2} + 2\left( {m - 3} \right)x + m} \right]\)

Giải

a) Điều kiện: \({x^2} - mx + m + 2 > 0\) với mọi x, dẫn đến \(\Delta  = {m^2} - 4m - 8 < 0\)   

\(\Leftrightarrow 2 - 2\sqrt 3  < m < 2 + 2\sqrt 3 \)          

b) Điều kiện: \({\log }_3\left( {{x^2} - 2x + 3m} \right) >0\)             

 \(\Leftrightarrow{x^2} - 2x + 3m > 1\) với mọi x do đó  \(m > {2 \over 3}\)  

c) 

Hàm số \(y = {\log _2}{\log _3}\left[ {\left( {m - 2} \right){x^2} + 2\left( {m - 3} \right)x + m} \right]\) xác đinh với mọi x khi và chỉ khi

 \({\log _3}\left[ {\left( {m - 2} \right){x^2} + 2\left( {m - 3} \right)x + m} \right] > 0\) với mọi x, tức là

\( {\left( {m - 2} \right){x^2} + 2\left( {m - 3} \right)x + m}  > 0\) với mọi x   (1)

+ Với \(m = 2\)  (không thỏa mãn)

+ Với \(m \ne 2\)

\(\left( 1 \right) \Leftrightarrow \left\{ \matrix{\Delta ' =  - 3m + 7 < 0 \hfill \cr a = m - 2 > 0 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{ m > {7 \over 3} \hfill \cr m > 2 \hfill \cr}  \right. \Leftrightarrow m > {7 \over 3}\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan