Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 214 trang 33 Sách Bài Tập (SBT) Toán 6 tập 1

Bình chọn:
3.6 trên 25 phiếu

Một thùng chứa hàng có dạng hình hộp chữ nhật chiều dài 320cm, chiều rộng 192cm, chiều cao 224cm. Cạnh các hộp hình lập phương đó có độ dài lớn nhất bao nhiêu?

Một thùng chứa hàng có dạng hình hộp chữ nhật chiều dài 320cm, chiều rộng 192cm, chiều cao 224cm. Người ta muốn xếp các hộp có dạng hình lập phương vào trong thùng chứa hàng sao cho các hộp xếp khít theo cả chiều dài, chiều rộng, và chiều cao của thùng. Cạnh các hộp hình lập phương đó có độ dài lớn nhất bao nhiêu? (số đo cạnh của hình lập phương là một số tự nhiên với đơn vị là xăng-ti-mét)

Giải

Gọi m (cm) (m ∈ \(\mathbb N^*\)) là cạnh của hình lập phương.

Vì hình lập phương xếp khít cả theo chiều dài, chiều rộng và chiều cao của thùng nên cạnh hình lập phương là ước chung của kích thước chiều dài, chiều rộng , chiều cao của thùng .

          Ta có: 320 ⋮ m , 192 ⋮ m và 224 ⋮ m

Vì m lớn nhất nên m là ƯCLN (320; 192; 224)

Ta có \(320 = {2^6}.5;192 = {2^6}.3;224 = {2^5}.7\)

           \(ƯCLN (320; 192; 224) = {2^5} = 32\)

Vậy cạnh hình lập phương lớn nhất bằng 32(cm).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 6 - Xem ngay

>> Học trực tuyến lớp 6 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh, Địa cùng các thầy cô nổi tiếng, dạy hay dễ hiểu

Bài viết liên quan