Loigiaihay.com 2020

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.32 trang 187 sách bài tập (SBT) - Giải tích 12

Bình chọn:
4 trên 2 phiếu

Hãy chỉ ra các kết quả đúng trong các kết quả sau:

 Hãy chỉ ra các kết quả đúng trong các kết quả sau:

a) \((\int\limits_0^1 {{x^n}{{(1 - x)}^m}dx = \int\limits_0^1 {{x^m}{{(1 - x)}^n}} } dx;m,n \in {N^*}\)

b) \(\int\limits_{ - 1}^1 {{{{t^2}} \over {{e^t} + 1}}} dt = \int\limits_0^1 {{t^2}dt} \)

c) \(\int\limits_0^1 {{{\sin }^3}x\cos xdx = } \int\limits_0^1 {{t^3}} dt\)

Hướng dẫn làm bài

a) Đúng

b) Ta có:   \(\int\limits_{ - 1}^1 {{{{t^2}dt} \over {{e^t} + 1}}}  = \int\limits_{ - 1}^0 {{{{t^2}dt} \over {{e^t} + 1}}}  + \int\limits_0^{ - 1} {{{{t^2}dt} \over {{e^t} + 1}}} \)               (*)

Dùng phương pháp đổi biến  t = - x đối với tích phân \(\int\limits_{ - 1}^0 {{{{t^2}dt} \over {{e^t} + 1}}} \) , ta được:

                  \(\int\limits_{ - 1}^0 {{{{t^2}dt} \over {{e^t} + 1}}}  = \int\limits_0^1 {{{{x^2}dx} \over {{e^{ - x}} + 1}} = \int\limits_0^1 {{{{t^2}dt} \over {{e^{ - t}} + 1}}} } \)

Thay vào (*) ta có: \(\int\limits_{ - 1}^1 {{{{t^2}dt} \over {{e^t} + 1}} = \int\limits_0^1 {{t^2}dt} } \)

c) Sai.

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.

Bài viết liên quan