Xem thêm: ÔN TẬP CUỐI NĂM - HÌNH HỌC
Tìm giá trị nhỏ nhất của biểu thức
\(4.\dfrac{{1 - \cos \alpha }}{{1 + \cos \alpha }} - \dfrac{2}{{{{\cos }^2}\dfrac{\alpha }{2}}} + 3\), (giả sử \(\cos \dfrac{\alpha }{2} \ne 0\))
Giải:
Đặt \(t = \tan \dfrac{\alpha }{2}\), thì
\(\begin{array}{l}4.\dfrac{{1 - \cos \alpha }}{{1 + \cos \alpha }} - \dfrac{2}{{{{\cos }^2}\dfrac{\alpha }{2}}} + 3\\ = 4{t^2} - 2\left( {1 + {t^2}} \right) + 3\\ = 2{t^2} + 1.\end{array}\)
nên giá trị nhỏ nhất đạt được là 1 khi \(t = 0\).
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục