Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.13 trang 178 sách bài tập Giải tích 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Tìm số phức z thỏa mãn

Tìm số phức z thỏa mãn

                           \({\left( {{{z + i} \over {z - i}}} \right)^4} = 1\)

Giải

\({\left( {{{z + i} \over {z - i}}} \right)^4} - 1 = 0 \Leftrightarrow \left[ {{{\left( {{{z + i} \over {z - i}}} \right)}^2} - 1} \right]\left[ {{{\left( {{{z + i} \over {z - i}}} \right)}^2} + 1} \right] = 0\)

Dễ thấy :

\({\left( {{{z + i} \over {z - i}}} \right)^2} = 1 \Leftrightarrow {{z + i} \over {z - i}} =  \pm 1 \Leftrightarrow z = 0\)

\({\left( {{{z + i} \over {z - i}}} \right)^2} + 1 = 0 \Leftrightarrow {\left( {{{z + i} \over {z - i}}} \right)^2} - {i^2} = 0 \)

\(\Leftrightarrow \left( {{{z + i} \over {z - i}} - i} \right)\left( {{{z + i} \over {z - i}} + i} \right) = 0\)

\(z = 1\)  hoặc \(z =  - 1\)

Vậy các số z cần tìm là 0 , 1 ,-1.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan