Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.28 trang 181 sách bài tập Giải tích 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Viết dạng lượng giác của mỗi số phức sau:

Viết dạng lượng giác của mỗi số phức sau:

a) \(\sin \varphi  + i2{\sin ^2}{\varphi  \over 2}\)                       

b) \({\rm{cos}}\varphi  + i\left( {1 + \sin \varphi } \right)\)

Giải

a) \(\sin \varphi  +2 i{\sin ^2}{\varphi  \over 2} = 2\sin {\varphi  \over 2}\left( {{\rm{cos}}{\varphi  \over 2} + isin{\varphi  \over 2}} \right),\) nên

khi \(\sin {\varphi  \over 2} = 0,\) số đó có dạng lượng giác không xác định

khi \(\sin {\varphi  \over 2} > 0,\) dạng viết trên là dạng lượng giác của số đã cho.

Khi \(\sin {\varphi  \over 2} < 0,\) số đó có dạng lượng giác

\( - 2\sin {\varphi  \over 2}\left[ {{\rm{cos}}\left( {{\varphi  \over 2} + \pi } \right) + isin\left( {{\varphi  \over 2} + \pi } \right)} \right]\)

b) \({\rm{cos}}\varphi  + i\left( {1 + \sin \varphi } \right) \)

\(= \sin \left( {\varphi  + {\pi  \over 2}} \right) + i\left[ {1 - c{\rm{os}}\left( {\varphi  + {\pi  \over 2}} \right)} \right]\)

\(=sin\left( {\varphi  + {\pi  \over 2}} \right) + i2{\sin ^2}\left( {{\varphi  \over 2} + {\pi  \over 4}} \right)\)

Nên theo câu a) ta có:

Khi \(\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right) = 0,\) số đã cho có dạng lượng giác không xác định.

Khi \(\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right) > 0,\) số đã cho có dạng lượng giác

\(  2\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right)\left[ {{\rm{cos}}\left( {{\varphi  \over 2} + {\pi  \over 4}} \right) + isin\left( {{\varphi  \over 2} + {\pi  \over 4}} \right)} \right]\)

Khi \(\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right) < 0,\) số đã cho có dạng lượng giác

\( - 2\sin \left( {{\varphi  \over 2} + {\pi  \over 4}} \right)\left[ {{\rm{cos}}\left( {{\varphi  \over 2} + {{5\pi } \over 4}} \right) + isin\left( {{\varphi  \over 2} + {{5\pi } \over 4}} \right)} \right]\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan