Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.33 trang 182 sách bài tập Giải tích 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho A, B, C, D là bốn điểm trong mặt phẳng phức theo thứ tự biểu diễn các số

Cho A, B, C, D là bốn điểm trong mặt phẳng phức theo thứ tự biểu diễn các số

\(4 + \left( {3 + \sqrt 3 } \right)i\)                       \(2 + \left( {3 + \sqrt 3 } \right)i\)       \(1 + 3i\)                               \(3 + i\)

Chứng minh rằng bốn điểm đó cùng nằm trên một đường tròn.

Giải

Chỉ cần chứng minh các góc lượng giác (CA,CB), (DA, DB) có số đo bằng nhau (sai khác \(k\pi, \;k\in Z\) ) (h.4.12)

Ta có \(\overrightarrow {CA} \) biểu diễn số phức \(3 + \sqrt 3 i\),  \(\overrightarrow {CB} \) biểu diễn số phức \(1 + \sqrt 3 i\) nên số đo góc (CA, CB) là một acgumen của \({{1 + \sqrt 3 i} \over {3 + \sqrt 3 i}}\) cũng là một acgumen của \(\left( {1 + \sqrt 3 i} \right)\left( {3 - \sqrt 3 i} \right) = 2\sqrt 3 \left( {\sqrt 3  + i} \right)\)

                                                                

Ta có \(\overrightarrow {DA} \) biểu diễn số phức \(1 + (2 + \sqrt 3 )i\),\(\overrightarrow {DB} \) biểu diễn số phức \( - 1 + (2 + \sqrt 3 )i\) nên số đo góc (DA, DB) là một acgumen của \({{ - 1 + (2 + \sqrt 3 )i} \over {1 + (2 + \sqrt 3 )i}}\) cũng là một acgumen của

\(\left[ { - 1 + \left( {2 + \sqrt 3 } \right)i} \right]\left[ {1 - \left( {2 + \sqrt 3 } \right)i} \right] \)

\(= 2\left( {\sqrt 3  + 2} \right)\left( {\sqrt 3  + i} \right)\)

Rõ ràng số này số \(2\sqrt 3 (\sqrt 3  + i)\) có cùng acgumen ( sai khác \(k2\pi ,k \in Z\))

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan