Cho A, B, C, D là bốn điểm trong mặt phẳng phức theo thứ tự biểu diễn các số
\(4 + \left( {3 + \sqrt 3 } \right)i\) \(2 + \left( {3 + \sqrt 3 } \right)i\) \(1 + 3i\) \(3 + i\)
Chứng minh rằng bốn điểm đó cùng nằm trên một đường tròn.
Giải
Chỉ cần chứng minh các góc lượng giác (CA,CB), (DA, DB) có số đo bằng nhau (sai khác \(k\pi, \;k\in Z\) ) (h.4.12)
Ta có \(\overrightarrow {CA} \) biểu diễn số phức \(3 + \sqrt 3 i\), \(\overrightarrow {CB} \) biểu diễn số phức \(1 + \sqrt 3 i\) nên số đo góc (CA, CB) là một acgumen của \({{1 + \sqrt 3 i} \over {3 + \sqrt 3 i}}\) cũng là một acgumen của \(\left( {1 + \sqrt 3 i} \right)\left( {3 - \sqrt 3 i} \right) = 2\sqrt 3 \left( {\sqrt 3 + i} \right)\)
Ta có \(\overrightarrow {DA} \) biểu diễn số phức \(1 + (2 + \sqrt 3 )i\),\(\overrightarrow {DB} \) biểu diễn số phức \( - 1 + (2 + \sqrt 3 )i\) nên số đo góc (DA, DB) là một acgumen của \({{ - 1 + (2 + \sqrt 3 )i} \over {1 + (2 + \sqrt 3 )i}}\) cũng là một acgumen của
\(\left[ { - 1 + \left( {2 + \sqrt 3 } \right)i} \right]\left[ {1 - \left( {2 + \sqrt 3 } \right)i} \right] \)
\(= 2\left( {\sqrt 3 + 2} \right)\left( {\sqrt 3 + i} \right)\)
Rõ ràng số này số \(2\sqrt 3 (\sqrt 3 + i)\) có cùng acgumen ( sai khác \(k2\pi ,k \in Z\))
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục