Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 87 trang 172 Sách bài tập (SBT) Toán 9 Tập 1

Bình chọn:
4.3 trên 7 phiếu

Cho hai đường tròn (O ; R) và (O' ; R') tiếp xúc ngoài tại A ( R > R').

Cho hai đường tròn (O ; R) và (O' ; R') tiếp xúc ngoài tại A ( R > R').

Vẽ các đường kính AOB, AO'C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC.

a)      Chứng minh rằng tứ giác BDCE là hình thoi.

b)      Gọi I là giao điểm của EC và đường tròn (O'). Chứng minh rằng ba điểm D, A, I thẳng hàng.

c)      Chứng minh rằng KI là tiếp tuyến của đường tròn (O').

Giải:

a) Vì đường tròn (O) và (O') tiếp xúcngoài tại A nên O, A và O' thẳng hàng.

      Ta có: KB = KC (gt)

Trong đường tròn (O) ta có:

    AB ⊥ DE tại K

Suy ra: KD = KE ( đường kính vuông góc với dây cung)

Tứ giác BDCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

Lại có: BC ⊥ DE

Suy ra tứ giác BDCE là hình thoi.

b) Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D.

Suy ra: AD ⊥ BD

Tứ giác BDCE là hình thoi nên EC // BD

Suy ra: EC ⊥ AD                      (1)

Tam giác AIC nội tiếp trong đường tròn (O') có AC là đường kính nên vuông tại I.

Suy ra: AI ⊥ CE                       (2)

Từ (1) và (2) suy ra AD trùng với AI

Vậy D, A, I thẳng hàng.

c) Tam giác DIE vuông tại I có IK là trung tuyến thuộc cạnh huyền DE nên:

\(KI = KD = {1 \over 2}ED\) ( tính chất tam giác vuông)

Suy ra tam giác IKD cân tại K

Suy ra: \(\widehat {KID} = \widehat {KDI}\) hay \(\widehat {KIA} = \widehat {KDA}\)   (3)

Ta có: O'A = O'I ( = R) nên tam giác O'IA cân tại O'

Suy ra: \(\widehat {O'AI} = \widehat {O'IA}\) ( tính chất tam giác cân)

Mà: \(\widehat {O'AI} = \widehat {KAD}\) (đối đỉnh)

Suy ra: \(\widehat {O'IA} = \widehat {KAD}\)                                   (4)

Từ (3) và (4) suy ra: \(\widehat {KIO'} = 90^\circ \) hay KI ⊥ O'I tại I.

Vậy KI là tiếp tuyến của đường tròn (O').

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan