Câu 87 trang 172 Sách bài tập (SBT) Toán 9 Tập 1

Bình chọn:
4.6 trên 5 phiếu

Cho hai đường tròn (O ; R) và (O' ; R') tiếp xúc ngoài tại A ( R > R').

Cho hai đường tròn (O ; R) và (O' ; R') tiếp xúc ngoài tại A ( R > R').

Vẽ các đường kính AOB, AO'C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC.

a)      Chứng minh rằng tứ giác BDCE là hình thoi.

b)      Gọi I là giao điểm của EC và đường tròn (O'). Chứng minh rằng ba điểm D, A, I thẳng hàng.

c)      Chứng minh rằng KI là tiếp tuyến của đường tròn (O').

Giải:

a) Vì đường tròn (O) và (O') tiếp xúcngoài tại A nên O, A và O' thẳng hàng.

      Ta có: KB = KC (gt)

Trong đường tròn (O) ta có:

    AB ⊥ DE tại K

Suy ra: KD = KE ( đường kính vuông góc với dây cung)

Tứ giác BDCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

Lại có: BC ⊥ DE

Suy ra tứ giác BDCE là hình thoi.

b) Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D.

Suy ra: AD ⊥ BD

Tứ giác BDCE là hình thoi nên EC // BD

Suy ra: EC ⊥ AD                      (1)

Tam giác AIC nội tiếp trong đường tròn (O') có AC là đường kính nên vuông tại I.

Suy ra: AI ⊥ CE                       (2)

Từ (1) và (2) suy ra AD trùng với AI

Vậy D, A, I thẳng hàng.

c) Tam giác DIE vuông tại I có IK là trung tuyến thuộc cạnh huyền DE nên:

\(KI = KD = {1 \over 2}ED\) ( tính chất tam giác vuông)

Suy ra tam giác IKD cân tại K

Suy ra: \(\widehat {KID} = \widehat {KDI}\) hay \(\widehat {KIA} = \widehat {KDA}\)   (3)

Ta có: O'A = O'I ( = R) nên tam giác O'IA cân tại O'

Suy ra: \(\widehat {O'AI} = \widehat {O'IA}\) ( tính chất tam giác cân)

Mà: \(\widehat {O'AI} = \widehat {KAD}\) (đối đỉnh)

Suy ra: \(\widehat {O'IA} = \widehat {KAD}\)                                   (4)

Từ (3) và (4) suy ra: \(\widehat {KIO'} = 90^\circ \) hay KI ⊥ O'I tại I.

Vậy KI là tiếp tuyến của đường tròn (O').

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan