Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu II.3 trang 173 Sách bài tập (SBT) Toán lớp 9 Tập 1

Bình chọn:
4 trên 3 phiếu

Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB.

Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB.

a)      Chứng minh rằng ba điểm M, H, O thẳng hàng.

b)      Tứ giác AOBH là hình gì ?

c)      Khi M di chuyển trên xy thì H di chuyển trên đường nào ?

Giải:

a) Gọi BD, AE là các đường cao của ∆MAB. Ta có ∆MAE = ∆MBD ( cạnh huyền – góc nhọn) nên ME = MD, ∆MHE = ∆MHD ( cạnh huyền – cạnh góc vuông) nên \(\widehat {EMH} = \widehat {DMH}\). MH và MO đều là tia phân giác của góc AMB nên M, H, O thẳng hàng.

b) Tứ giác AOBH có BH // OA, AH // OB và OA = OB nên là hình thoi.

c) H cách A cố định một khoảng bằng OA không đổi nên H di chuyển trên đường tròn (A ; AO).

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan