Câu II.3 trang 173 Sách bài tập (SBT) Toán lớp 9 Tập 1

Bình chọn:
4 trên 3 phiếu

Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB.

Cho đường tròn (O) và điểm A cố định trên đường tròn. Gọi xy là tiếp tuyến với đường tròn tại A. Từ một điểm M nằm trên xy, vẽ tiếp tuyến MB với đường tròn. Gọi H là trực tâm của tam giác MAB.

a)      Chứng minh rằng ba điểm M, H, O thẳng hàng.

b)      Tứ giác AOBH là hình gì ?

c)      Khi M di chuyển trên xy thì H di chuyển trên đường nào ?

Giải:

a) Gọi BD, AE là các đường cao của ∆MAB. Ta có ∆MAE = ∆MBD ( cạnh huyền – góc nhọn) nên ME = MD, ∆MHE = ∆MHD ( cạnh huyền – cạnh góc vuông) nên \(\widehat {EMH} = \widehat {DMH}\). MH và MO đều là tia phân giác của góc AMB nên M, H, O thẳng hàng.

b) Tứ giác AOBH có BH // OA, AH // OB và OA = OB nên là hình thoi.

c) H cách A cố định một khoảng bằng OA không đổi nên H di chuyển trên đường tròn (A ; AO).

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Bài viết liên quan