Xem thêm: ĐỀ KIỂM TRA - CHƯƠNG II
ĐỀ 3 (45 phút)
Câu 1 (5 điểm) trang 67 sách bài tập (SBT) – Hình học 12
Cho ba điểm A, B, C nằm trên mặt cầu (S) tâm O, AB = 5a , AC = 4a , BC = 3a , khoảng cách từ O đến mặt phẳng (ABC) bằng 2a. Tính thể tích mặt cầu (S) theo a.
Hướng dẫn làm bài
Tam giác ABC có AB2 = AC2 + BC2 nên nó vuông tại C. Mặt phẳng (ABC) cắt (S) theo đường tròn đường kính AB. Gọi I là trung điểm của AB, khi đó OI = 2a.
Suy ra OB=√(5a2)2+4a2=√412a
Vậy V(S)=43π(a√412)3=41√416πa3
Câu 2 (5 điểm) trang 67 sách bài tập (SBT) – Hình học 12
Cho hình trụ (H) có chiều cao bằng h, bán kính đường tròn đáy bằng R, O và O’ là tâm của hai đáy. Gọi AB là đường kính thuộc đường tròn đáy (O) , CD là đường kính thuộc đường tròn đáy (O’), góc giữa AB và CD bằng α(0<α≤900). Tính tỉ số thể tích giữa khối tứ diện ABCD và khối trụ (H). Xác định α để tỉ số đó là lớn nhất.
Hướng dẫn làm bài
Thể tích khối trụ (H) là V(H)=πR2h , thể tích khối tứ diện ABCD là:
VABCD=16AB.CD.sinα.h=23R2hsinα
Suy ra: VABCDV(H)=2sinα3π≤23π
Tỉ số đó là lớn nhất bằng 23π khi α=900
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục