Processing math: 100%
Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Đề 3 trang 67 Sách bài tập (SBT) Hình học 12

Bình chọn:
4 trên 3 phiếu

Cho ba điểm A, B, C nằm trên mặt cầu (S) tâm O, AB = 5a , AC = 4a , BC = 3a , khoảng cách từ O đến mặt phẳng (ABC) bằng 2a. Tính thể tích mặt cầu (S) theo a.

ĐỀ 3 (45 phút)

Câu 1 (5 điểm) trang 67 sách bài tập (SBT) – Hình học 12

Cho ba điểm A, B, C nằm trên mặt cầu (S) tâm O, AB = 5a , AC = 4a , BC = 3a , khoảng cách từ O đến mặt phẳng (ABC) bằng 2a. Tính thể tích mặt cầu (S) theo a.

Hướng dẫn làm bài

Tam giác ABC có AB2 = AC2 + BC2 nên nó vuông tại C. Mặt phẳng (ABC) cắt (S) theo đường tròn đường kính AB. Gọi I là trung điểm của AB, khi đó  OI = 2a.

Suy ra OB=(5a2)2+4a2=412a

Vậy V(S)=43π(a412)3=41416πa3

Câu 2 (5 điểm) trang 67 sách bài tập (SBT) – Hình học 12

Cho hình trụ (H) có chiều cao bằng h, bán kính đường tròn đáy bằng R, O và O’ là tâm của hai đáy. Gọi AB là đường kính thuộc đường tròn đáy (O) , CD là đường kính thuộc đường tròn đáy (O’), góc giữa AB và CD bằng α(0<α900). Tính tỉ số thể tích giữa khối tứ diện ABCD và khối trụ (H). Xác định α để tỉ số đó là lớn nhất.

Hướng dẫn làm bài

Thể tích khối trụ (H) là V(H)=πR2h , thể tích khối tứ diện ABCD là:

VABCD=16AB.CD.sinα.h=23R2hsinα

Suy ra: VABCDV(H)=2sinα3π23π

Tỉ số đó là lớn nhất bằng  23π khi α=900

Sachbaitap.com

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan