Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 10 trang 215 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ

Cho hàm số

\(f\left( x \right) = {x^3} + b{x^2} + cx + d\) ;    (C)

\(g\left( x \right) = {x^2} - 3x - 1.\)

a) Xác định b, c, d sao cho đồ thị (C) đi qua các điểm \(\left( {1;3} \right),\left( { - 1; - 3} \right)\) và \(f'\left( {{1 \over 3}} \right) = {5 \over 3}\) ;

b) Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ \({x_0} = 1\) ;

c) Giải phương trình \(f'\left( {\sin t} \right) = 3\) ;

d) Giải phương trình \(f''\left( {\cos t} \right) = g'\left( {\sin t} \right)\) ;

e) Tìm giới hạn \(\mathop {\lim }\limits_{z \to 0} {{f''\left( {\sin 5z} \right) + 2} \over {g'\left( {\sin 3z} \right) + 3}}.\)

Giải :

a)

\(\eqalign{
& c = 2,b = - 1,d = 1 \cr
& \Rightarrow f\left( x \right) = {x^3} - {x^2} + 2x + 1{\rm{ }}; \cr} \)

b) \(f'\left( x \right) = 3{x^2} - 2x + 2 \Rightarrow f'\left( 1 \right) = 3.\)

Phương trình tiếp tuyến tại \(M\left( {1;3} \right)\) là

\(y - 3 = 3\left( {x - 1} \right)\) hay \(y = 3x.\)

c)

\(\eqalign{
& f'\left( {\sin t} \right) = 3{\sin ^2}t - 2\sin t + 2. \cr
& f'\left( {\sin t} \right) = 3 \cr
& \Leftrightarrow 3{\sin ^2}t - 2\sin t - 1 = 0 \cr
& \Leftrightarrow \left[ \matrix{
\sin t = 1 \hfill \cr
\sin t = - {1 \over 3} \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
t = {\pi \over 2} + k2\pi \hfill \cr
t = \arcsin \left( { - {1 \over 3}} \right) + k2\pi \hfill \cr
t = \pi - \arcsin \left( { - {1 \over 3}} \right) + k2\pi \hfill \cr} \right.\left( {k \in Z} \right). \cr} \)

d)

\(\eqalign{
& f''\left( x \right) = 6x - 2 \cr
& \Rightarrow f''\left( {\cos t} \right) = 6\cos t - 2 \cr} \) ;

\(\eqalign{
& g'\left( x \right) = 2x - 3 \cr
& \Rightarrow g'\left( {\sin t} \right) = 2\sin t - 3. \cr} \)

Vậy

\(\eqalign{
& 6\cos t - 2 = 2\sin t - 3 \cr
& \Leftrightarrow 2\sin t - 6\cos t = 1 \cr
& \Leftrightarrow \sin t - 3\cos t = {1 \over 2}. \cr} \)

Đặt \(\tan \varphi  = 3,\) ta được

\(\sin \left( {t - \varphi } \right) = {1 \over 2}\cos \varphi  = \alpha .\) Suy ra 

\(\left[ \matrix{
t = \varphi + \arcsin \alpha + k2\pi \hfill \cr
t = \pi + \varphi - \arcsin \alpha + k2\pi {\rm{ }}\left( {k \in Z} \right). \hfill \cr} \right.\)

e)

\(\mathop {\lim }\limits_{z \to 0} {{f''\left( {\sin 5z} \right) + 2} \over {g'\left( {\sin 3z} \right) + 3}} = \mathop {\lim }\limits_{z \to 0} {{6\sin 5z} \over {2\sin 3z}} = 5\mathop {\lim }\limits_{z \to 0} {{{{\sin 5z} \over {5z}}} \over {{{\sin 3z} \over {3z}}}} = 5.\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan