Loigiaihay.com 2021

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 109 trang 123 SBT Hình học 10 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Bài 109 trang 123 SBT Hình học 10 Nâng cao

Cho parabol \((P):\,{y^2} = 2px\,\,(p > 0)\).

a) Tìm độ dài của dây cung vuông góc với trục đối xứng của \((P)\) tại tiêu điểm \(F\) của \((P)\).

b) \(A\) là một điểm cố định trên \((P)\). Một góc vuông \(uAt\) quay quanh đỉnh \(A\) có các cạnh cắt \((P)\) tại \(B\) và \(C\). Chứng minh rằng đường thẳng \(BC\) luôn đi qua một điểm cố định.

Giải

a) (h.134).

 

Gọi \(M , N\) là các giao điểm của \((P)\) và đường thẳng vuông góc với \(Ox\) tại \(F\). Khi đó, toạ độ của \(M, N\) là nghiệm của hệ \(\left\{ \begin{array}{l}x =  \dfrac{p}{2}\\{y^2} = 2px\end{array} \right.\)

Hệ có hai nghiệm là \(\left( { \dfrac{p}{2} ; p} \right) , \left( { \dfrac{p}{2} ;  - p} \right)\).

Vậy \(MN = |{y_M}| + |{y_N}| = 2p\).

b) (h.135).

 

Giả sử \(A = \left( { \dfrac{{{a^2}}}{{2p}} ; a} \right) ,\) \(  B = \left( { \dfrac{{{b^2}}}{{2p}} ; b} \right) , \) \( C = \left( { \dfrac{{{c^2}}}{{2p}} ; c} \right)\).

Phương trình đường thẳng \(BC\) là:

\(\begin{array}{l}2px - (b + c)y + bc = 0.             (1)\\\overrightarrow {AB}  = \left( { \dfrac{{{b^2} - {a^2}}}{{2p}} ; b - a} \right) ,\\\overrightarrow {AC}  = \left( { \dfrac{{{c^2} - {a^2}}}{{2p}} ; c - a} \right).\\\overrightarrow {AB}  \bot \overrightarrow {AC}    \Leftrightarrow   \overrightarrow {AC} .\overrightarrow {AC}  = 0 \\   \Leftrightarrow   ({b^2} - {a^2})({c^2} - {a^2})\\ + 4{p^2}(b - a)(c - a) = 0\\ \Leftrightarrow   (b + a)(c + a) + 4{p^2} = 0\\ \Leftrightarrow   bc + a(b + c) + {a^2} + 4{p^2} = 0.       (2)\end{array}\)

Rút \(bc\) từ (2) thay vào (1), ta được phương trình của \(BC\) là

\(2px - {a^2} - 4{p^2} - (b + c)(y + a) = 0\)                 (3)

Dễ thấy đường thẳng \(BC\) có dạng (3) luôn đi qua điểm cố định \(M = \left( { \dfrac{{{a^2}}}{{2p}} + 2p ;  - a} \right)\).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan