Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.14 trang 15 Sách bài tập (SBT) Giải tích 12

Bình chọn:
3.3 trên 3 phiếu

Tìm cực trị của các hàm số sau:

Tìm cực trị của các hàm số sau:

a) \(y = \sin 2x\)                                                             

b) \(y = \cos x - \sin x\)

c) \(y = {\sin ^2}x\)

Hướng dẫn làm bài:

a) \(y = \sin 2x\)               

Hàm số có chu kỳ \(T = \pi \)

Xét hàm số \(y = \sin 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , ta có:

\(y' = 2\cos 2x\)

\(y = 0 \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} \hfill \cr
x = {{3\pi } \over 4} \hfill \cr} \right.\)

Bảng biến thiên:

 

Do đó trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) , hàm số đạt cực đại  tại \({\pi  \over 4}\) , đạt cực tiểu tại \({{3\pi } \over 4}\) và \({y_{CD}} = y({\pi  \over 4}) = 1;\,\,{y_{CT}} = y({{3\pi } \over 4}) =  - 1\)       

Vậy trên R ta có:

\({y_{CĐ}} = y({\pi  \over 4} + k\pi ) = 1;\)

\({y_{CT}} = y({{3\pi } \over 4} + k\pi ) =  - 1,k \in Z\)          

b)

Hàm số tuần hoàn chu kỳ  nên ta xét trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\).

\(\eqalign{
& y' = - \sin x - \cos x \cr
& y' = 0 < => \tan x = - 1 < = > x = - {\pi \over 4} + k\pi ,k \in Z \cr} \)

 Lập bảng biến thiên trên đoạn \({\rm{[}} - \pi ;\pi {\rm{]}}\)

 

Hàm số đạt cực đại tại \(x =  - {\pi  \over 4} + k2\pi \) , đạt cực tiểu tại \(x = {{3\pi } \over 4} + k2\pi (k \in Z)\) và

 \({y_{CĐ}} = y( - {\pi  \over 4} + k2\pi ) = \sqrt 2\) ;

\({y_{CT}} = y({{3\pi } \over 4} + k2\pi ) =  - \sqrt 2 (k \in Z)\)       

c) Ta có: \(y = {\sin ^2}x = {{1 - \cos 2x} \over 2}\)

Do đó, hàm số đã cho tuần hoàn với chu kỳ \(\pi \). Ta xét hàm số \(y = {1 \over 2} - {1 \over 2}\cos 2x\) trên đoạn \({\rm{[}}0;\pi {\rm{]}}\) .

\(\eqalign{
& y' = \sin 2x \cr
& y' = 0 < = > \sin 2x = 0 < = > x = k.{\pi \over 2}(k \in Z) \cr} \) 

Lập bảng biến thiên trên đoạn \(\left[ {0,\pi } \right]\)

 

Từ đó, ta thấy hàm số đạt cực tiểu tại \(x = k.{\pi  \over 2}\) với k chẵn, đạt cực đại tại \(x = k.{\pi  \over 2}\) với k lẻ, và  

\({y_{CT}} = y(2m\pi ) = 0;\)

\({y_{CĐ}} = y((2m + 1){\pi  \over 2}) = 1(m \in Z)\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan