Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f(x) = {{2x - 1} \over {x - 3}}\) trên đoạn [0; 2].
(Đề thi tốt nghiệp THPT năm 2008, lần 2)
Hướng dẫn làm bài:
TXĐ: D =R\{3}
\(f'(x) = - {5 \over {{{(x - 3)}^2}}} < 0,\forall x \in D\) và do đó f(x) nghịch biến trên các khoảng \(( - \infty ;3),(3; + \infty )\)
Ta thấy \({\rm{[}}0;2] \subset ( - \infty ;3).\)
Vì vậy: \(\mathop {\min }\limits_{{\rm{[}}0;2]} f(x) = f(2) = - 3;\mathop {\max }\limits_{{\rm{[}}0;2]} f(x) = f(0) = {1 \over 3}\).
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục