Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 13 trang 128 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Tìm m để phương trình

Tìm m để phương trình \({x^4} - \left( {3m + 5} \right){x^2} + {\left( {m + 1} \right)^2} = 0\) có bốn nghiệm lập thành cấp số cộng.

Giải:

Đặt \({x^4} = y\) ta có phương trình

\({y^2} - \left( {3m + 5} \right)y + {\left( {m + 1} \right)^2} = 0\)         (1)

Để phương trình có 4 nghiệm thì phương trình (1) phải có 2 nghiệm dương \({y_1},{y_2}{\rm{ }}\left( {{y_1} < {y_2}} \right)\) Bốn nghiệm đó là \( - \sqrt {{y_2}} , - \sqrt {{y_1}} ,\sqrt {{y_1}} ,\sqrt {{y_2}} \).

Điều kiện để 4 nghiệm trên lập thành cấp số cộng là \(\sqrt {{y_2}}  - \sqrt {{y_1}}  = 2\sqrt {{y_1}} \) hay \({y_2} = 9{y_1}\)  kết hợp vớiđịnh lí Vi-ét tìm được m = 5 và \(m =  - {{25} \over {19}}\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan