Giảm giá 50% tất cả các khóa học các lớp trên Tuyensinh247.com
Xem ngay

Chỉ còn: 00:05:48

Bài 1.3 trang 8 Sách bài tập (SBT) Giải tích 12

Bình chọn:
4.2 trên 6 phiếu

Xét tính đơn điệu của các hàm số

Xét tính đơn điệu của các hàm số:

a) \(y = \sqrt {25 - {x^2}} \)

b) \(y = {{\sqrt x } \over {x + 100}}\)

c) \(y = {x \over {\sqrt {16 - {x^2}} }}\)

d) \(y = {{{x^3}} \over {\sqrt {{x^2} - 6} }}\)

Hướng dẫn làm bài

a) TXĐ: [-5; 5]

 \(y' = {{ - x} \over {\sqrt {25 - {x^2}} }}\) ; y’ = 0       <=>  x = 0

Bảng biến thiên:

Vậy hàm số đồng biến trên khoảng (-5; 0) nghịch biến trên khoảng (0; 5)

b) TXĐ: [0; +∞)

    \(y' = {{100 - x} \over {2\sqrt x {{(x + 100)}^2}}}\)  ; y’ = 0  <=>  x = 100

Vậy hàm số đồng biến trên khoảng (0; 100) và nghịch biến trên khoảng (100; +∞)

c) TXĐ:  (-4; 4)

    \(y' = {{16} \over {(16 - {x^2})\sqrt {16 - {x^2}} }} > 0\) ; ∀ x ∈ (-4; 4).

Vậy hàm số đồng biến trên khoảng (-4; 4).

d) TXĐ:  (-∞; \(\sqrt 6 \)) ∪ (\(\sqrt 6 \); +∞)

\(y' = {{2{x^2}({x^2} - 9)} \over {({x^2} - 6)\sqrt {{x^2} - 6} }}\) ; y’ = 0  <=>  x = ±3

Vậy hàm số đồng biến trên các khoảng (-∞; -3), (3; +∞), nghịch biến trên các khoảng (-3;\(-\sqrt 6 \) ), (\(\sqrt 6 \); 3).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Bài viết liên quan