Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.4 trang 12 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Trong mặt phẳng Oxy cho đường tròn (C) có phương trình

Trong mặt phẳng Oxy cho đường tròn (C) có phương trình \({x^2} + {y^2} - 2x + 4y - 4 = 0\). Tìm ảnh của (C) qua phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( { - 2;5} \right)\).

Giải:

Cách 1. Dễ thấy (C) là đường tròn tâm \(I\left( {1; - 2} \right)\), bán kính \(r = 3\).Gọi \(I' = {T_{\overrightarrow v }}\left( I \right) = \left( {1 - 2; - 2 + 5} \right) = \left( { - 1;3} \right)\) và (C') là ảnh của (C) qua \({T_{\overrightarrow v }}\) thì (C') là đường tròn tâm (I') bán kính \(r = 3\). Do đó (C') có phương trình:

\({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 9\)

Cách 2.  Biểu thức tọa độ của \({T_{\overrightarrow v }}\) là

\(\left\{ \matrix{
x' = x - 2 \hfill \cr
y' = y + 5 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
x = x' + 2 \hfill \cr
y = y' - 5 \hfill \cr} \right.\)

Thay vào phương trình của (C) ta được

\(\eqalign{
& {\left( {x' + 2} \right)^2} + {\left( {y' - 5} \right)^2} - 2\left( {x' + 2} \right) + 4\left( {y' - 5} \right) - 4 = 0 \cr
& \Leftrightarrow x{'^2} + y{'^2} + 2x' - 6y' + 1 = 0 \cr
& \Leftrightarrow {\left( {x' + 1} \right)^2} + {\left( {y' - 3} \right)^2} = 9 \cr} \)

Do đó (C') có phương trình \({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 9\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan