Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.4 trang 12 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Trong mặt phẳng Oxy cho đường tròn (C) có phương trình

Trong mặt phẳng Oxy cho đường tròn (C) có phương trình \({x^2} + {y^2} - 2x + 4y - 4 = 0\). Tìm ảnh của (C) qua phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( { - 2;5} \right)\).

Giải:

Cách 1. Dễ thấy (C) là đường tròn tâm \(I\left( {1; - 2} \right)\), bán kính \(r = 3\).Gọi \(I' = {T_{\overrightarrow v }}\left( I \right) = \left( {1 - 2; - 2 + 5} \right) = \left( { - 1;3} \right)\) và (C') là ảnh của (C) qua \({T_{\overrightarrow v }}\) thì (C') là đường tròn tâm (I') bán kính \(r = 3\). Do đó (C') có phương trình:

\({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 9\)

Cách 2.  Biểu thức tọa độ của \({T_{\overrightarrow v }}\) là

\(\left\{ \matrix{
x' = x - 2 \hfill \cr
y' = y + 5 \hfill \cr} \right. \Rightarrow \left\{ \matrix{
x = x' + 2 \hfill \cr
y = y' - 5 \hfill \cr} \right.\)

Thay vào phương trình của (C) ta được

\(\eqalign{
& {\left( {x' + 2} \right)^2} + {\left( {y' - 5} \right)^2} - 2\left( {x' + 2} \right) + 4\left( {y' - 5} \right) - 4 = 0 \cr
& \Leftrightarrow x{'^2} + y{'^2} + 2x' - 6y' + 1 = 0 \cr
& \Leftrightarrow {\left( {x' + 1} \right)^2} + {\left( {y' - 3} \right)^2} = 9 \cr} \)

Do đó (C') có phương trình \({\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} = 9\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan