Bài 17 trang 14 SGK Toán lớp 9 tập 1
Câu hỏi:
Áp dụng quy tắc khai phương một tích, hãy tính:
a) \( \sqrt{0,09.64}\); b) \( \sqrt{2^{4}.(-7)^{2}}\);
c) \( \sqrt{12,1.360}\); d) \( \sqrt{2^{2}.3^{4}}\).
Phương pháp:
Sử dụng các công thức:
+) \(\sqrt{a^2}=\left|a \right|\).
+) Nếu \(a \ge 0\) thì \(\left|a \right| = a\).
Nếu \(a < 0\) thì \(\left| a \right| =-a\)
+) \(\sqrt{a.b}=\sqrt{a}.\sqrt{b}\), với \(a ,\ b \ge 0\).
+) \((a^n)^m=a^{m.n}\), với \(m ,\ n \in \mathbb{Z}\).
Lời giải:
a) Ta có:
\(\sqrt{0,09.64}=\sqrt{0,09}.\sqrt{64}\)
\(=\sqrt{(0,3)^2}.\sqrt{8^2}\)
\(=|0,3|. |8|\)
\(=0,3.8\)
\(=2,4\).
b) Ta có:
\(\sqrt{2^{4}.(-7)^{2}}=\sqrt{2^4}.\sqrt{(-7)^2}\)
\(=\sqrt{(2^2)^2}.\sqrt{(-7)^2}\)
\(=\sqrt{4^2}.\left| -7 \right| \)
\(=|4|.|-7|\)
\(=4.7\)
\(=28\).
c) Ta có:
\(\sqrt{12,1.360}=\sqrt{12,1.(10.36)}\)
\(=\sqrt{(12,1.10).36}\)
\(=\sqrt{121.36}\)
\(=\sqrt{121}.\sqrt{36}\)
\(=\sqrt{11^2}.\sqrt{6^2}\)
\(=|11|.|6|\)
\(=11.6\)
\(=66\).
d) Ta có:
\(\sqrt{2^{2}.3^{4}}=\sqrt{2^2}.\sqrt{3^4}\)
\(=\sqrt{2^{2}}.\sqrt{(3^2)^2}\)
\(=\sqrt{ 2^2}.\sqrt{9^2}\)
\(=|2|.|9|\)
\(=2.9\)
\(=18\).
Bài 18 trang 14 SGK Toán lớp 9 tập 1
Câu hỏi:
Áp dụng quy tắc nhân các căn bậc hai, hãy tính:
a) \(\sqrt{7}.\sqrt{63}\); b) \(\sqrt{2,5}.\sqrt{30}.\sqrt{48}\);
c) \(\sqrt{0,4}.\sqrt{6,4}\); d) \(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}\).
Phương pháp:
Sử dụng các công thức:
+) \(\sqrt{a}.\sqrt{b}=\sqrt{a.b}\), với \(a ,\ b \ge 0\).
+) Với mọi số \(a \ge 0\), luôn có \(\sqrt{a^2}=a\).
+) Với mọi \(a ,\ b ,\ c\) ta có: \(a.b.c=(a.b).c=a.(b.c)=b.(a.c) \).
Lời giải:
a) Ta có:
\(\sqrt{7}.\sqrt{63}=\sqrt{7.63}\) \(=\sqrt{7.(7.9)}\) \(=\sqrt{(7.7).9}\)
\(=\sqrt{7^2. 3^2}\) \(=\sqrt{7^2}.\sqrt{3^2}\)
\(=|7|.|3|=7.3\) \(=21\).
b) Ta có:
\(\sqrt{2,5}.\sqrt{30}.\sqrt{48}=\sqrt{2,5.30.48}\)
\(=\sqrt{2,5.(10.3).(16.3)}\)
\(=\sqrt{(2,5.10).(3.3).16}\)
\(=\sqrt{25.3^2.4^2}\)
\(=\sqrt{25}.\sqrt{3^2}.\sqrt{4^2}\)
\(=\sqrt{5^2}.\sqrt{3^2}.\sqrt{4^2}\)
\(=|5|.|3|.|4|=5.3.4\) \(=60\).
c) Ta có:
\(\sqrt{0,4}.\sqrt{6,4}=\sqrt{0,4.6,4}=\sqrt{0,4.(0,1.64)}\)
\(=\sqrt{(0,4.0,1).64}=\sqrt{0,04.64}\)
\(=\sqrt{0,04}.\sqrt{64}=\sqrt{0,2^2}.\sqrt{8^2}\)
\(=|0,2|.|8|=0,2.8\) \(=1,6\).
d)
\(\sqrt{2,7}.\sqrt{5}.\sqrt{1,5}=\sqrt{2,7.5.1,5}\)
\(=\sqrt{(27.0,1).5.(0,5.3)}\)
\(=\sqrt{(27.3).(0,1.5).0,5}\)
\(=\sqrt{81.0,5.0,5} =\sqrt{81.0,5^2}\)
\(=\sqrt{81}.\sqrt{0,5^2}=\sqrt{9^2}.\sqrt{0,5^2}\)
\(=|9|.|0,5|=9.0,5=4,5\).
Bài 19 trang 15 SGK Toán lớp 9 tập 1
Câu hỏi:
Rút gọn các biểu thức sau:
a) \( \sqrt{0,36a^{2}}\) với \(a <0\);
b) \( \sqrt{a^4.(3-a)^2}\) với \(a ≥ 3\);
c) \( \sqrt{27.48(1 - a)^{2}}\) với \(a > 1\);
d) \( \dfrac{1}{a - b}\).\( \sqrt{a^{4}.(a - b)^{2}}\) với \(a > b\).
Lời giải:
a) Ta có:
\( \sqrt{0,36a^{2}}\ = \sqrt{0,36}.\sqrt{a^{2}}\)
\(=\sqrt{0,6^2}.\sqrt{a^2}\)
\(= 0,6.│a│\) (Vì \(a < 0\) nên \(│a│= -a)\).
\(= 0,6. (-a)=-0,6a\)
b)
Vì \( a^{2}\) ≥ 0 nên \(\left| a^2 \right|= a^{2}\).
Vì \(a \ge 3\) hay \(3 \le a \) nên \(3 - a ≤ 0\).
\( \Rightarrow│3 - a│= -(3-a)=-3+a=a - 3\).
Ta có: \( \sqrt{a^{4}.(3 - a)^{2}}= \sqrt{a^{4}}\).\( \sqrt{(3 - a)^{2}}\)
\(=\sqrt{(a^2)^2}.\sqrt{(3-a)^2}\)
\(= \left| a^{2}\right|.\left| 3 - a \right|\).
\(= a^2.(a-3)=a^3-3a^2\).
c)
Vì \(a > 1\) hay \(1<a\) nên \(1 - a < 0\).
\( \Rightarrow \left| 1 - a\right| =-(1-a)=-1+a= a -1\).
Ta có: \( \sqrt{27.48(1 - a)^{2}} = \sqrt{27.(3.16).(1 - a)^{2}}\)
\(=\sqrt{(27.3).16.(1-a)^2}\)
\(= \sqrt{81.16.(1 - a)^{2}}\)
\(=\sqrt {81} .\sqrt {16} .\sqrt {{{(1 - a)}^2}} \)
\(=\sqrt{9^2}.\sqrt{4^2}.\sqrt{(1-a)^2}\)
\(= 9.4.|1 - a|\)
\(= 36.|1 - a|\)
\(= 36.(a-1)=36a-36\).
d)
Vì \(a^2 \ge 0\), với mọi \(a\) nên \( \left|a^2 \right| = a^2\).
Vì \(a > b\) nên \(a -b > 0\). Do đó \(\left|a - b\right|= a - b\).
Ta có: \( \dfrac{1}{a - b}\) . \( \sqrt{a^{4}.(a - b)^{2}}\)
\(= \dfrac{1}{a - b}\) . \( \sqrt{a^{4}}.\sqrt{(a - b)^{2}}\)
\(= \dfrac{1}{a - b} . {\left| {{a^2}} \right|.\left| {a - b} \right|}\)
\(=\dfrac{1}{a - b} . a^{2}.(a - b) \)
\(=\dfrac{1}{a - b} . (a - b). a^{2} \)
\(=a^2\)
Bài 20 trang 15 SGK Toán lớp 9 tập 1
Câu hỏi:
Rút gọn các biểu thức sau:
a) \( \sqrt{\dfrac{2a}{3}}\).\( \sqrt{\dfrac{3a}{8}}\) với \(a ≥ 0\);
b) \( \sqrt{13a}.\sqrt{\dfrac{52}{a}}\) với \(a > 0\);
c) \( \sqrt{5a}.\sqrt{45a} - 3a\) với \(a ≥ 0\);
d) \( (3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}\).
Lời giải:
a) Ta có:
\(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{2a}{3}.\dfrac{3a}{8}}=\sqrt{\dfrac{2a.3a}{3.8}}\) \(=\sqrt{\dfrac{a^2}{4}}=\sqrt{\dfrac{a^2}{2^2}}\)
\(=\sqrt{\left(\dfrac{a}{2}\right)^2}=\left| \dfrac{a}{2}\right|\) \(= \dfrac{a}{2}\).
(Vì \(a \ge 0\) nên \(\dfrac{a}{2} \ge 0 \) \( \Rightarrow \left| \dfrac{a}{2} \right| = \dfrac{a}{2}\)).
b) Ta có:
\(\sqrt{13a}.\sqrt{\dfrac{52}{a}}=\sqrt{13a.\dfrac{52}{a}}=\sqrt{\dfrac{13a.52}{a}}\)
\(=\sqrt{\dfrac{13a.(13.4)}{a}}=\sqrt{\dfrac{(13.13).4.a}{a}}\)
\(=\sqrt{13^2.4}=\sqrt{13^2}.\sqrt{4}\)
\(=\sqrt{13^2}.\sqrt{2^2}=13.2\)
\(=26\) (vì \(a>0\))
c)
Do \(a\geq 0\) nên bài toán luôn được xác định.
Ta có: \(\sqrt{5a}.\sqrt{45a}- 3a=\sqrt{5a.45a}-3a\)
\(=\sqrt{(5.a).(5.9.a)}-3a\)
\(=\sqrt{(5.5).9.(a.a)}-3a\)
\(=\sqrt{5^2.3^2.a^2}-3a\)
\(=\sqrt{5^2}.\sqrt{3^2}.\sqrt{a^2}-3a\)
\(=5.3.\left|a\right|-3a=15 \left|a \right| -3a.\)
\(=15a - 3a = (15-3)a =12a.\)
(vì \(a \ge 0\) nên \(\left| a \right| = a).\)
d) Ta có:
\((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=(3 - a)^{2}-\sqrt{0,2.180a^2}\)
\(= (3-a)^2-\sqrt{0,2.(10.18).a^2}\)
\(=(3-a)^2-\sqrt{(0,2.10).18.a^2}\)
\(=(3-a)^2-\sqrt{2.18.a^2}\)
\(=(3-a)^2-\sqrt{36a^2}\)
\(=(3-a)^2-\sqrt{36}.\sqrt{a^2}\)
\(=(3-a)^2-\sqrt{6^2}.\sqrt{a^2}\)
\(=(3-a)^2-6.\left|a\right|\).
+) \(TH1\): Nếu \(a\geq 0\Rightarrow |a|=a\).
Do đó: \((3 - a)^{2}- 6\left|a\right|=(3-a)^2-6a\)
\(=(3^2-2.3.a+a^2)-6a\)
\(=(9-6a+a^2)-6a\)
\(=9-6a+a^2-6a\)
\(=a^2+(-6a-6a)+9\)
\(=a^2+(-12a)+9\)
\(=a^2-12a+9\).
+) \(TH2\): Nếu \(a<0\Rightarrow |a|=-a\).
Do đó: \((3 - a)^{2}- 6\left|a\right| =(3-a)^2-6.(-a)\)
\(=(3^2-2.3.a+a^2)-(-6a)\)
\(=(9-6a+a^2)+6a\)
\(=9-6a+a^2+6a\)
\(=a^2+(-6a+6a)+9\)
\(=a^2+9\).
Vậy \((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=a^2-12a+9\), nếu \(a \ge 0\).
\((3 - a)^{2}- \sqrt{0,2}.\sqrt{180a^{2}}=a^2+9\), nếu \(a <0\).
Bài 21 trang 15 SGK Toán lớp 9 tập 1
Câu hỏi:
Khai phương tích 12.30.40 được:
\((A) 1200\); \((B) 120\); \((C) 12\); \((D) 240\)
Hãy chọn kết quả đúng.
Lời giải:
Ta có:
\(\sqrt{12.30.40}=\sqrt{(3.4).(3.10).(4.10)}\)
\(=\sqrt{(3.3).(4.4).(10.10)}\)
\(=\sqrt{3^2.4^2.10^2}\)
\(=\sqrt{3^2}.\sqrt{4^2}.\sqrt{10^2}\)
\(=3.4.10=120\).
Vậy đáp án đúng là \((B). 120\)
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục