Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.9 trang 9 Sách bài tập (SBT) Giải tích 12

Bình chọn:
4 trên 4 phiếu

Chứng minh rằng phương trình sau không thể có hai nghiệm thực trong đoạn [0; 1].

Chứng minh rằng phương trình \({x^3} - 3x + c = 0\) không thể có hai nghiệm thực trong đoạn [0; 1].

Hướng dẫn làm bài:

Đặt \(f(x) = {x^3} - 3x + C\) . TXĐ: R

\(f'(x) = 3{x^2} - 3 = 3({x^2} - 1)\)

\(f'(x) = 0 \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = - 1 \hfill \cr} \right.\)

Bảng biến thiên:

                   

Trên đoạn [0; 1] hàm số f(x) nghịch biến nên đồ thị của hàm số f(x) không thể cắt trục hoành tại hai điểm trên đoạn này, tứclà phương trình x3 – 3x + C = 0 không thể có hai nghiệm thực trên đoạn [0; 1].

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan