Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm.
a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên.
b) Một đoạn thẳng có chiều dài 100 cm và có hai đầu mút nằm trên hai đường tròn đáy. Tính khoảng cách từ đoạn thẳng đó đến trục hình trụ.
Hướng dẫn làm bài:
a) Ta có công thức \({S_{xq}} = 2\pi rl\) với r = 50 cm , l = 50 cm.
Do đó \({S_{xq}} = 2\pi .50.50 = \pi .5000(c{m^2})\) và \(V = \pi {r^2}h = 125000.\pi (c{m^3})\)
b) Giả sử đoạn thẳng AB có điểm mút A nằm trên đường tròn đáy tâm O’ . Theo giả thiết ta có: AB = 100 cm. Giả sử IK là đoạn vuông góc chung của trục OO’ và đoạn AB với I thuộc OO’ và K thuộc AB. Chiếu vuông góc đoạn AB xuống mặt phẳng đáy chứa đường tròn tâm O’ , ta có A’ , H , B lần lượt là hình chiếu của A, K, B.
Vì \(KI \bot OO'\) nên IK // mp(O’BA’) , do đó O’H // IK và O’H = IK.
Ta suy ra \(O'H \bot AB\) và \(O'H \bot AA'\) . Vậy \(O'H \bot A'B\)
Xét tam giác vuông AA’B ta có \(A'B = \sqrt {A{B^2} - AA{'^2}} = \sqrt {{{100}^2} - {{50}^2}} = 50\sqrt 3 \)
Vậy \(IK = O'H = \sqrt {O'{A^2} - A'{H^2}}\)
\( = \sqrt {{{50}^2} - {{({{50\sqrt 3 } \over 2})}^2}} = 50\sqrt {1 - {3 \over 4}} = 25(cm)\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục