Rút gọn:
\(f\left( x \right) = \left( {{{x - 1} \over {2\left( {\sqrt x + 1} \right)}} + 1} \right).{2 \over {\sqrt x + 1}}:{\left( {{{\sqrt {x - 2} } \over {\sqrt {x + 2} + \sqrt {x - 2} }} + {{x - 2} \over {\sqrt {{x^2} - 4} - x + 2}}} \right)^2}\) và tìm f'(x)
Giải:
\(f\left( x \right) = {4 \over {{x^2} - 4}};{\rm{ }}f'\left( x \right) = - {{8x} \over {{{\left( {{x^2} - 4} \right)}^2}}}.\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục