Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.22 trang 64 sách bài tập (SBT) – Hình học 12

Bình chọn:
4 trên 2 phiếu

Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi là mặt phẳng đi qua A sao cho góc giữa OA và bằng 300.

Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi \((\alpha )\) là mặt phẳng đi qua A sao cho góc giữa OA và \((\alpha )\) bằng 300.

a) Tính diện tích của thiết diện tạo bởi \((\alpha )\) và hình cầu.

b) Đường thẳng  đi qua A vuông góc với mặt phẳng \((\alpha )\) cắt mặt cầu tại B. Tính độ dài đoạn AB.

Hướng dẫn làm bài:

a) Gọi H là hình chiếu vuông góc của tâm O trên mặt phẳng \((\alpha )\) . Theo giả thiết ta có \(\widehat {OAH} = {30^0}\) .

Do đó:  \(HA = OA.\cos {30^0} = r{{\sqrt 3 } \over 2}\)

Vậy diện tích của thiết diện tạo bởi \((\alpha )\) và hình cầu là: \(S = \pi .H{A^2} = {{3\pi {r^2}} \over 4}\)

b) Mặt phẳng (ABO) qua tâm O của hình cầu nên cắt mặt cầu theo đường tròn lớn qua A và B. Gọi I là trung điểm của đoạn AB ta có \(OI \bot AB\) . Vì AB // OH nên AIOH là hình chữ nhật.

Do đó \(AI = OH = {{OA} \over 2} = {r \over 2}\) . Vậy AB = 2AI = r

Chú ý:  Có thể nhận xét rằng tam giác OAB cân tại O (OA = OB) và có góc \(\widehat {OAB} = {60^0}\)  nên OAB là tam giác đều và suy ra AB = OA = OB = r.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan