Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.29 trang 80 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Tính độ dài.A’B’, B’C’

Cho ba mặt phẳng \(\left( \alpha  \right),\left( \beta  \right),\left( \gamma  \right)\) song song với nhau. Hai đường thẳng a và a’ cắt ba mặt phẳng ấy theo thứ tự nói trên tại A, B, C vàA’, B’, C’. Cho \(AB = 5,BC = 4,A'C' = 18\). Tính độ dài.A’B’, B’C’

Giải:

Vì \(\left( \alpha  \right)\parallel \left( \beta  \right)\parallel \left( \gamma  \right)\) nên \({{AB} \over {A'B'}} = {{BC} \over {B'C'}}\)

Mặt khác ta có:

\({{AB} \over {A'B'}} = {{BC} \over {B'C'}} = {{AB + BC} \over {A'B' + B'C'}} = {{AC} \over {A'C'}}\) 

Suy ra: \(A'B' = {{A'C'.AB} \over {AC}} = {{18.5} \over 9} = 10\)

Vậy  A’B’ = 10 và \(B'C' = {{A'C'.BC} \over {AC}} = {{18.4} \over 9} = 8\)

Vậy B’C’ = 8.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan