Cho ba mặt phẳng \(\left( \alpha \right),\left( \beta \right),\left( \gamma \right)\) song song với nhau. Hai đường thẳng a và a’ cắt ba mặt phẳng ấy theo thứ tự nói trên tại A, B, C vàA’, B’, C’. Cho \(AB = 5,BC = 4,A'C' = 18\). Tính độ dài.A’B’, B’C’
Giải:
Vì \(\left( \alpha \right)\parallel \left( \beta \right)\parallel \left( \gamma \right)\) nên \({{AB} \over {A'B'}} = {{BC} \over {B'C'}}\)
Mặt khác ta có:
\({{AB} \over {A'B'}} = {{BC} \over {B'C'}} = {{AB + BC} \over {A'B' + B'C'}} = {{AC} \over {A'C'}}\)
Suy ra: \(A'B' = {{A'C'.AB} \over {AC}} = {{18.5} \over 9} = 10\)
Vậy A’B’ = 10 và \(B'C' = {{A'C'.BC} \over {AC}} = {{18.4} \over 9} = 8\)
Vậy B’C’ = 8.
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục