Cho ba mặt phẳng \(\left( \alpha \right),\left( \beta \right),\left( \gamma \right)\) song song với nhau. Hai đường thẳng a và a’ cắt ba mặt phẳng ấy theo thứ tự nói trên tại A, B, C vàA’, B’, C’. Cho \(AB = 5,BC = 4,A'C' = 18\). Tính độ dài.A’B’, B’C’
Giải:
Vì \(\left( \alpha \right)\parallel \left( \beta \right)\parallel \left( \gamma \right)\) nên \({{AB} \over {A'B'}} = {{BC} \over {B'C'}}\)
Mặt khác ta có:
\({{AB} \over {A'B'}} = {{BC} \over {B'C'}} = {{AB + BC} \over {A'B' + B'C'}} = {{AC} \over {A'C'}}\)
Suy ra: \(A'B' = {{A'C'.AB} \over {AC}} = {{18.5} \over 9} = 10\)
Vậy A’B’ = 10 và \(B'C' = {{A'C'.BC} \over {AC}} = {{18.4} \over 9} = 8\)
Vậy B’C’ = 8.
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục