Cho hình chóp S.ABCD. Gọi E, F, G lần lượt là các điểm thuộc miền trong các tam giác SAB, SBC, SCD. Xác định thiết diện do mặt phẳng (EFG) cắt hình chóp.
Giải:
(h.2.78) Gọi \(E' = SE \cap AB,F' = SF \cap BC,G' = SG \cap C{\rm{D}}\). Trong mặt phẳng (SE’F’), gọi \(I = EF \cap E'F',K = FG \cap F'G'\). Ta có: \(IK = \left( {EFG} \right) \cap \left( {ABCD} \right)\). Gọi \(I' = AB \cap IK,K' = C{\rm{D}} \cap IK\). Gọi \(M = SA \cap I'E,N = SB \cap I'E\) và \(P = SC \cap K'G,Q = S{\rm{D}} \cap K'G\)
Thiết diện tạo bởi mp (EFG) cắt hình chóp là tứ giác MNPQ.
Chú ý: Vị trí thiết diện có thể thay đổi tùy theo vị trí của E, G, F.
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục