Xem thêm: Chương III. Phương trình bậc nhất một ẩn
Bài 27 trang 22 SGK Toán lớp 8 tập 2
Câu hỏi:
Giải các phương trình:
Phương Pháp:
Giải phương trình chứa ẩn ở mẫu
Bước 1: Tìm điều kiện xác định của phương trình
Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: Kết luận.
Lời giải:
a) Điều kiện xác định: x ≠ -5.
Suy ra: 2x – 5 = 3(x + 5)
⇔ 2x – 5 = 3x + 15
⇔ -5 – 15 = 3x – 2x
⇔ x = -20 (thỏa mãn điều kiện xác định).
Vậy phương trình có tập nghiệm S = {-20}.
b) Điều kiện xác định: x ≠ 0.
Suy ra: 2(x2 – 6) = 2x2 + 3x
⇔ 2x2 – 12 – 2x2 – 3x = 0
⇔ - 12 - 3x = 0
⇔ -3x = 12
⇔ x = -4 (thỏa mãn điều kiện xác định)
Vậy phương trình có tập nghiệm S = {-4}.
c) Điều kiện xác định: x ≠ 3.
Suy ra: (x2 + 2x) – (3x + 6) = 0
⇔ x(x + 2) – 3(x + 2) = 0
⇔ (x – 3)(x + 2) = 0
⇔ x – 3 = 0 hoặc x + 2 = 0
+ x – 3 = 0 ⇔ x = 3 (Không thỏa mãn đkxđ)
+ x + 2 = 0 ⇔ x = -2 (Thỏa mãn đkxđ).
Vậy phương trình có tập nghiệm S = {-2}.
d) Điều kiện xác định: x ≠ -2/3.
Suy ra: 5 = (2x – 1)(3x + 2) hay (2x – 1)(3x + 2) = 5
⇔ 2x.3x + 2x.2 – 1.3x – 1.2 = 5
⇔ 6x2 + 4x – 3x – 2 – 5 = 0
⇔ 6x2 + x – 7 = 0.
⇔ 6x2 – 6x + 7x – 7 = 0
(Tách để phân tích vế trái thành nhân tử)
⇔ 6x(x – 1) + 7(x – 1) = 0
⇔ (6x + 7)(x – 1) = 0
⇔ 6x + 7 = 0 hoặc x – 1 = 0
+ 6x + 7 = 0 ⇔ 6x = - 7 ⇔ x = -7/6 (thỏa mãn đkxđ)
+ x – 1 = 0 ⇔ x = 1 (thỏa mãn đkxđ).
Vậy phương trình có tập nghiệm
Bài 28 trang 22 SGK Toán lớp 8 tập 2
Câu hỏi:
Giải các phương trình:
Lời giải:
a) Điều kiện xác định: x ≠ 1.
Suy ra: 2x – 1 + x – 1 = 1
⇔ 3x – 2 = 1
⇔ 3x = 3
⇔ x = 1 (không thỏa mãn điều kiện xác định).
Vậy phương trình vô nghiệm.
b) Điều kiện xác định: x ≠ -1.
Suy ra: 5x + 2( x+ 1) = - 12
⇔ 5x + 2x + 2 = -12
⇔ 7x + 2 = -12
⇔ 7x = -14
⇔ x = -2 (thỏa mãn đkxđ)
Vậy phương trình có tập nghiệm S = {-2}
c) Điều kiện xác định: x ≠ 0.
Suy ra: x3 + x = x4 + 1
⇔ x4 + 1 – x – x3 = 0
⇔ (x4 – x3) + (1 – x) = 0
⇔ x3(x – 1) – (x – 1) = 0
⇔ (x3 – 1)(x – 1) = 0
⇔ (x – 1)(x2 + x + 1)(x – 1) = 0
⇔ (x – 1)2. (x2 + x + 1) = 0
⇔ x – 1 = 0
(vì với mọi x).
⇔ x = 1 (thỏa mãn đkxđ).
Vậy phương trình có tập nghiệm S = {1}.
d) Điều kiện xác định: x ≠ 0 và x ≠ -1.
Suy ra: x(x + 3) + (x + 1)(x – 2) = 2.x(x + 1)
⇔ x(x + 3) + (x + 1)(x – 2) – 2x(x + 1) = 0
⇔ x2 + 3x + x2 – 2x + x – 2 – (2x2 + 2x) = 0
⇔ x2 + 3x + x2 – 2x + x – 2 – 2x2 - 2x = 0
⇔ x2 + x2 – 2x2 + 3x + x – 2x – 2x – 2 = 0
⇔ 0x – 2 = 0
⇔ 0x = 2 (vô lí)
Phương trình vô nghiệm.
Kiến thức áp dụng
Để giải phương trình chứa ẩn ở mẫu ta cần:
+ Bước 1: Tìm điều kiện xác định (các mẫu thức khác 0).
+ Bước 2: Quy đồng mẫu số cả hai vế của phương trình rồi khử mẫu.
+ Bước 3: Giải phương trình vừa nhận được (Đưa về pt bậc nhất, đưa về pt tích; …)
+ Bước 4: Đối chiếu nghiệm với đkxđ rồi kết luận.
Bài 29 trang 22 SGK Toán lớp 8 tập 2
Câu hỏi:
Bạn Sơn giải phương trình
Bạn Hà cho rằng Sơn giải sai vì đã nhân hai vế với biểu thức x – 5 có chứa ẩn. Hà giải bằng cách rút gọn vế trái như sau:
Phương pháp:
Phương pháp chứa ẩn ở mẫu
Bước 1: Tìm xác định điều kiện của trình phương pháp
Bước 2: Quy đồng mẫu của phương trình rồi khử mẫu.
Bước 3: Đã nhận được Medium method.
Bước 4: Kết luận.
Lời giải:
+) Cách làm của bạn Sơn sai vì chưa đặt điều kiện xác định cho phương trình đã nhân cả hai vế với ( x- 5).
+) Cách làm của bạn Hà sai vì chưa đặt điều kiện xác định cho phương trình đã rút gọn cả hai vế cho biểu thức (x- 5) phụ thuộc biến x.
+) Cách giải đúng
Điều kiện xác định: x ≠ 5
Ta có:
Suy ra: x2 – 5x = 5( x- 5)
x( x- 5) – 5(x – 5) = 0
( x- 5).( x- 5) =0
(x - 5)2 = 0
x – 5= 0
x = 5 ( không thỏa mãn ĐKXĐ).
Vậy phương trình đã cho vô nghiệm.
Bài 30 trang 23 SGK Toán lớp 8 tập 2
Câu hỏi:
Giải các phương trình:
Lời giải:
a) Điều kiện xác định: x ≠ 2.
Suy ra: 1 + 3(x – 2) = -(x – 3)
⇔ 1 + 3x – 6 = -x + 3
⇔ 3x + x = 3 + 6 – 1
⇔ 4x = 8
⇔ x = 2 (không thỏa mãn đkxđ).
Vậy phương trình vô nghiệm.
b) Điều kiện xác định: x ≠ -3.
Suy ra: 14x(x + 3) – 14x2 = 28x + 2(x + 3)
⇔ 14x2 + 42x – 14x2 = 28x + 2x + 6
⇔ 42x – 28x – 2x = 6
⇔ 12x = 6
⇔ x = 12">1212. (thỏa mãn điều kiện)
Vậy phương trình có tập nghiệm S = {12">1212}.
c) Điều kiện xác định: x ≠ ±1.
Suy ra: x2 + 2x + 1 – (x2 – 2x + 1) = 4
⇔ x2 + 2x + 1 – x2 + 2x – 1 = 4
⇔ 4x = 4
⇔ x = 1 (không thỏa mãn đkxđ)
Vậy phương trình vô nghiệm.
d) Điều kiện xác định: x ≠ -7; x ≠ 32">3232.
Suy ra: (3x – 2)(2x – 3) = (6x + 1)(x + 7)
⇔ 6x2 – 9x – 4x + 6 = 6x2 + 42x + x + 7
⇔ - 4x - 9x - 42x - x = 7 - 6
⇔ - 56x = 1
⇔ x = −156">−156−156 (thỏa mãn đkxđ)
Vậy phương trình có tập nghiệm S = {−156">−156−156}.
Kiến thức áp dụng
Để giải phương trình chứa ẩn ở mẫu ta cần:
+ Bước 1: Tìm điều kiện xác định (các mẫu thức khác 0).
+ Bước 2: Quy đồng mẫu số cả hai vế của phương trình rồi khử mẫu.
+ Bước 3: Giải phương trình vừa nhận được (Đưa về pt bậc nhất, đưa về pt tích; …)
+ Bước 4: Đối chiếu nghiệm với đkxđ rồi kết luận.
Bài 31 trang 23 SGK Toán lớp 8 tập 2
Câu hỏi:
Giải các phương trình:
Lời giải:
a.\(\dfrac{1}{{x - 1}} - \dfrac{{3{x^2}}}{{{x^3} - 1}} = \dfrac{{2x}}{{{x^2} + x + 1}}\) (1)
Ta có: \(x - 1 ≠ 0 \Leftrightarrow x ≠ 1\) và \({x^3} - 1 \ne 0\) khi \(x^3 \ne 1\) hay \(x \ne 1\)
\( {x^2+x + 1} = {{x^2} + x + \dfrac{1}{4} + \dfrac{3}{4}} \)
\( = {{x^2} + 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}\)
\(= {{{\left( {x + \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}\)
Ta có: \({\left( {x + \dfrac{1}{2}} \right)^2} \geqslant 0\) với mọi \(x \in\mathbb R\) nên \({\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\) với mọi \(x \in\mathbb R\)
Do đó:
ĐKXĐ: \(x ≠ 1\)
MTC= \({x^3} - 1=(x-1)(x^2+x+1)\)
Ta có:
(1) \( \Leftrightarrow \dfrac{{{x^2} + x + 1}}{{{x^3} - 1}} - \dfrac{{3{x^2}}}{{{x^3} - 1}} = \dfrac{{2x\left( {x - 1} \right)}}{{{x^3} - 1}}\)
\(\Rightarrow {x^2} + x + 1 - 3{x^2} = 2x\left( {x - 1} \right) \)
\(\Leftrightarrow - 2{x^2} + x + 1 = 2{x^2} - 2x\)
\( \Leftrightarrow 0 = 2{x^2} - 2x + 2{x^2} - x - 1\)
\( \Leftrightarrow 0 = 4{x^2} - 3x - 1\)
\(\Leftrightarrow 4{x^2} - 3x - 1 = 0\)
\(\Leftrightarrow 4{x^2} - 4x+x - 1 = 0\)
\(\Leftrightarrow 4x\left( {x - 1} \right) + \left( {x - 1} \right) = 0\)
\(\Leftrightarrow \left( {x - 1} \right)\left( {4x + 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{gathered}
x - 1 = 0 \hfill \\
4x + 1 = 0 \hfill \\
\end{gathered} \right.\)
\( \Leftrightarrow \left[ \begin{gathered}
x = 1 \hfill \\
4x = - 1 \hfill \\
\end{gathered} \right.\)
\(\Leftrightarrow \left[ {\matrix{{x = 1}\text{( loại)} \cr {x = - \dfrac{1}{4}}\text{(thỏa mãn)}\cr} }\right.\)
Vậy phương trình có nghiệm duy nhất \(x = - \dfrac{1}{4}\)
b.\(\dfrac{3}{{\left( {x - 1} \right)\left( {x - 2} \right)}} + \dfrac{2}{{\left( {x - 3} \right)\left( {x - 1} \right)}} \)\(\,= \dfrac{1}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\) (2)
ĐKXĐ: \(x ≠ 1, x ≠ 2, x ≠ 3\)
MTC= \((x-1)(x-2)(x-3)\)
Ta có: (2)
\( \Rightarrow 3\left( {x - 3} \right) + 2\left( {x - 2} \right) = x - 1\)
\(\Leftrightarrow 3x - 9 + 2x - 4 = x - 1\)
\( \Leftrightarrow 5x - 13 = x - 1\)
\( \Leftrightarrow 5x - x = - 1 + 13\)
\(⇔ 4x = 12\)
\( \Leftrightarrow x = 12:4\)
\(⇔ x = 3\) (không thỏa mãn ĐKXĐ)
Vậy phương trình vô nghiệm.
c. \(1 + \dfrac{1}{{x + 2}} = \dfrac{{12}}{{8 + {x^3}}}\)(3)
Ta có: \(8 + {x^3} \ne 0\)\(\Leftrightarrow x^3 ≠ -8 ⇔ x ≠ -2\)
ĐKXĐ: \(x ≠ -2\)
MTC= \(8 + {x^3}=(x+2)(x^2-2x+4)\)
Ta có: (3) \( \Leftrightarrow \dfrac{{8 + {x^3}}}{{8 + {x^3}}} + \dfrac{{{x^2} - 2x + 4}}{{8 + {x^3}}} = \dfrac{{12}}{{8 + {x^3}}}\)
\( \Rightarrow {x^3} + 8 + {x^2} - 2x + 4 = 12 \)
\( \Leftrightarrow {x^3} + {x^2} - 2x = 12 - 8 - 4\)
\(\Leftrightarrow {x^3} + {x^2} - 2x = 0\)
\(\Leftrightarrow x\left( {{x^2} + x - 2} \right) = 0\)
\(\Leftrightarrow x\left[ {{x^2} + 2x - x - 2} \right] = 0\)
⇔\(x[ x(x+2) - (x+2) ] = 0\)
⇔ \(x(x + 2)(x - 1) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x + 2 = 0\\
x - 1 = 0
\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l}
x = 0\left( \text{ thỏa mãn} \right)\\
x = - 2\left( \text{ loại} \right)\\
x = 1\left( \text{ thỏa mãn} \right)
\end{array} \right.\)
Vậy phương trình có tập nghiệm là \(S = \left\{ {0;1} \right\}\).
d. \(\dfrac{{13}}{{\left( {x - 3} \right)\left( {2x + 7} \right)}} + \dfrac{1}{{2x + 7}} \)\(\,= \dfrac{6}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\) (4)
ĐKXĐ: \(x \ne 3,x \ne - 3,x \ne - \dfrac{7}{2}\)
MTC= \({\left( {x - 3} \right)\left( {x + 3} \right)}\left( {2x + 7} \right)\)
Ta có: (4)
\( \Rightarrow 13\left( {x + 3} \right) + \left( {x - 3} \right)\left( {x + 3} \right) \)\(= 6\left( {2x + 7} \right) \)
\(\Leftrightarrow 13x + 39 + {x^2} - 9 = 12x + 42\)
\(\Leftrightarrow {x^2} + 13x + 30 = 12x + 42\)
\( \Leftrightarrow {x^2} + 13x + 30 - 12x - 42 = 0\)
\(\Leftrightarrow {x^2} + x - 12 = 0\)
\(\Leftrightarrow {x^2} + 4x - 3x - 12 = 0\)
\(\Leftrightarrow x\left( {x + 4} \right) - 3\left( {x + 4} \right) = 0\)
\(\Leftrightarrow \left( {x - 3} \right)\left( {x + 4} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}
x - 3 = 0\\
x + 4 = 0
\end{array} \right. \)
\(\Leftrightarrow \left[ \begin{array}{l}
x = 3\left( \text{không thỏa mãn} \right)\\
x = - 4\left( \text{thỏa mãn} \right)
\end{array} \right.\)
Vậy phương trình có tập nghiệm là \(S = \left\{-4 \right\}\).
Bài 32 trang 23 SGK Toán lớp 8 tập 2
Câu hỏi:
Giải các phương trình:
Lời giải:
ĐKXĐ: x ≠ 0
ĐKXĐ: x ≠ 0
Vậy nghiệm của phương trình là x = −1.
Bài 33 trang 23 SGK Toán lớp 8 tập 2
Câu hỏi:
Tìm các giá trị của a sao cho mỗi biểu thức sau có giá trị bằng 2:
Lời giải:
Suy ra: (3a – 1)(a + 3) + (a – 3)(3a + 1) = 2(3a + 1)(a + 3)
⇔ 3a2 + 9a – a – 3 + 3a2 + a – 9a – 3 = 2(3a2 + 9a + a + 3)
⇔ 6a2– 6 = 6a2 + 18a + 2a + 6
⇔ 6a2– 6 − 6a2 − 18a − 2a – 6 = 0
⇔ −20a – 12 = 0
⇔ −20a = 12
⇔ a = (thỏa mãn điều kiện)
Vậy với a = thì biểu thức đã cho có giá trị bằng 2.
b) Để biểu thức có giá trị bằng 2 thì
ĐKXĐ: a ≠ -3 ta có:
Suy ra: (3a – 1)(a + 3) + (a – 3)(3a + 1) = 2(3a + 1)(a + 3)
⇔ 3a2 + 9a – a – 3 + 3a2 + a – 9a – 3 = 2(3a2 + 9a + a + 3)
⇔ 6a2– 6 = 6a2 + 18a + 2a + 6
⇔ 6a2– 6 − 6a2 − 18a − 2a – 6 = 0
⇔ −20a – 12 = 0
⇔ −20a = 12
⇔ a = (thỏa mãn điều kiện)
Vậy với a = thì biểu thức đã cho có giá trị bằng 2.
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục