Loigiaihay.com 2022

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 32, 33, 34 trang 77 SGK Toán 8 tập 2 -Trường hợp đồng dạng thứ hai

Bình chọn:
4.9 trên 7 phiếu

Bài 32, 33, 34 trang 77 SGK Toán 8 tập 2 bài Trường hợp đồng dạng thứ hai. Bài 33. Chứng minh rằng nếu tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k, thì tỉ số của hai đường trung tuyến tương ứng với hai tam giác đó cũng bằng k.

Bài 32 trang 77 SGK Toán lớp 8 tập 2

Câu hỏi:

Trên một cạnh của góc \(xOy\) (\(\widehat {xOy} \ne {180^0}\)), Đặt các đoạn thẳng \(OA= 5cm, OB= 16cm\). Trên cạnh thứ hai của góc đó, đặt các đoạn \(OC= 8cm, OD= 10cm\).

a) Chứng minh hai tam giác \(OCB\) và \(OAD\) đồng dạng.

b) Gọi giao điểm của các cạnh \(AD\) và \(BC\) là \(I\), chứng minh rằng hai tam giác \(IAB\) và \(ICD\) có các góc bằng nhau từng đôi một.

Phương pháp:

Áp dụng:

- Định lí: Nếu hai cạnh tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp đó bằng nhau, thì hai tam giác đồng dạng.

- Định lí tổng ba góc trong một tam giác.

- Tính chất hai tam giác đồng dạng.

Lời giải

Bài 33 trang 77 SGK Toán lớp 8 tập 2

Câu hỏi:

Chứng minh rằng nếu tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k, thì tỉ số của hai đường trung tuyến tương ứng với hai tam giác đó cũng bằng k.

Phương pháp:

Áp dụng:

- Định lí: Nếu hai cạnh tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp đó bằng nhau, thì hai tam giác đồng dạng.

- Tính chất hai tam giác đồng dạng.

- Tính chất trung tuyến.

Lời giải:

Bài 34 trang 77 SGK Toán lớp 8 tập 2

Câu hỏi:

Dựng tam giác \(ABC\), biết \(\widehat{A}={60^o}\) và, tỉ số \(\dfrac{AB}{AC} = \dfrac{4}{5}\) và đường cao \(AH = 6cm\).

Phương pháp:

Áp dụng định lí: Một đường thẳng cắt hai cạnh của tam giác và song song với cạnh còn lại tạo thành một tam giác đồng dạng với tam giác đã cho.

- Tính chất hai tam giác đồng dạng.

Lời giải:

Sachbaitap.com 

Bài tiếp theo

Bài viết liên quan