Tứ diện SABC có SA vuông góc với mặt phẳng (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC. Chứng minh rằng:
a) AH, SK và BC đồng quy.
b) SC vuông góc với mặt phẳng (BHK) và \(\left( {SAC} \right) \bot \left( {BHK} \right)\)
c) HK vuông góc với mặt phẳng (SBC) và \(\left( {SBC} \right) \bot \left( {BHK} \right)\)
Giải:
a) Gọi A’ là giao điểm của AH và BC. Ta cần chứng minh ba điểm S, K, A’ thẳng hàng.
Vì H là trực tâm của tam giác ABC nên \(AA' \bot BC\). Mặt khác theo giả thiết ta có: \(SA \bot \left( {ABC} \right)\), do đó \(SA \bot BC\). Từ đó ta suy ra \(BC \bot \left( {SAA'} \right)\) và \(BC \bot SA'\). Vậy SA’ là đường cao của tam giác SBC nên SA’ là phải đi qua trực tâm K. Vậy ba đường thẳng AH, SK và BC đồng quy.
b) Vì K là trực tâm của tam giác SBC nên \(BK \bot SC\,\,\,\,\,\,\,\,\left( 1 \right)\)
Mặt khác ta có \(BH \bot AC\) vì H là trực tâm của tam giác ABC và \(BH \bot SA\) vì \(SA \bot \left( {ABC} \right)\).
Do đó \(BH \bot \left( {ABC} \right)\) nên \(BH \bot SC\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\).
Từ (1) và (2) ta suy ra \(SC \bot \left( {BHK} \right)\). Vì mặt phẳng (SAC) chứa SC mà \(SC \bot \left( {BHK} \right)\) nên ta có \(\left( {SAC} \right) \bot \left( {BHK} \right)\).
c) Ta có
\(\left. \matrix{
BC \bot \left( {SAA'} \right),BC \bot HK \hfill \cr
SC \bot \left( {BHK} \right),SC \bot HK \hfill \cr} \right\} \Rightarrow HK \bot \left( {SBC} \right)\)
Mặt phẳng (BHK) chứa HK mà \(HK \bot \left( {SBC} \right)\) nên \(\left( {BHK} \right) \bot \left( {SBC} \right)\).
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục