Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD lần lượt ta lấy các điểm M, N sao cho
\({{AM} \over {AC}} = {{BN} \over {B{\rm{D}}}} = k\left( {k > 0} \right)\)
Chứng minh rằng ba vectơ \(\overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.
Giải:
Ta có:
\(\eqalign{
& \overrightarrow {PQ} = {1 \over 2}\left( {\overrightarrow {PC} + \overrightarrow {P{\rm{D}}} } \right) \cr
& = {1 \over 2}\left[ {\left( {\overrightarrow {AC} - \overrightarrow {AP} } \right) + \left( {\overrightarrow {B{\rm{D}}} - \overrightarrow {BP} } \right)} \right] \cr
& = {1 \over 2}\left[ {\left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) - \underbrace {\left( {\overrightarrow {AP} + \overrightarrow {BP} } \right)}_{\overrightarrow 0 }} \right] \cr
& = {1 \over 2}.{1 \over k}\left( {\overrightarrow {AM} + \overrightarrow {BN} } \right) \cr} \)
Vì \(\overrightarrow {AC} = {1 \over k}.\overrightarrow {AM} \) và \(\overrightarrow {B{\rm{D}}} = {1 \over k}.\overrightarrow {BN} \)
Đồng thời \(\overrightarrow {AM} = \overrightarrow {AP} + \overrightarrow {PM} \) và \(\overrightarrow {BN} = \overrightarrow {BP} + \overrightarrow {PN} \), nên \(\overrightarrow {PQ} = {1 \over {2k}}\left( {\overrightarrow {PM} + \overrightarrow {PN} } \right)\) vì \(\overrightarrow {AP} + \overrightarrow {BP} = \overrightarrow 0 \)
Vậy \(\overrightarrow {PQ} = {1 \over {2k}}\overrightarrow {PM} + {1 \over {2k}}\overrightarrow {PN} \)
Do đó ba vectơ \(\overrightarrow {PQ} ,\overrightarrow {PM} ,\overrightarrow {PN} \) đồng phẳng.
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục