Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.38 trang 162 Sách bài tập (SBT) Hình học 11

Bình chọn:
4 trên 2 phiếu

Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng

Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng \(AC = BC = A{\rm{D}} = B{\rm{D}} = a\) và \(AB = p,C{\rm{D}} = q\).

Giải:

Gọi I và K lần lượt là trung điểm của AB và CD (h.3.80), ta có IK là đoạn vuông góc chung của AB và CD và độ dài đoạn IK là khoảng cách cần tìm:

\(I{K^2} = B{K^2} - B{I^2} = B{K^2} - {{{p^2}} \over 4}\)

Mà \(B{K^2} = B{C^2} - C{K^2} = {a^2} - {{{q^2}} \over 4}\)

Vậy \(I{K^2} = {a^2} - {{{p^2} + {q^2}} \over 4}\)

Do đó \(IK = {1 \over 2}\sqrt {4{{\rm{a}}^2} - \left( {{p^2} + {q^2}} \right)} \)

Với điều kiện \(4{{\rm{a}}^2} - \left( {{p^2} + {q^2}} \right) > 0\).

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan