Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.5 trang 169 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Xét tính liên tục của các hàm số sau:

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = \sqrt {x + 5}\) tại x = 4 ;

b)

\(g\left( x \right) = \left\{ \matrix{
{{x - 1} \over {\sqrt {2 - x} - 1}},\,\,{\rm{ nếu }}\,\,x \le 1 \hfill \cr
- 2x{\rm{ ,\,\, nếu }}\,\,x \ge 1 \hfill \cr} \right.\) tại x = 1

 

Giải:

a)     Hàm số \(f\left( x \right) = \sqrt {x + 5} \) có tập xác định là  \({\rm{[}} - 5{\rm{ }};{\rm{ }} + \infty )\). Do đó, nó xác định trên khoảng \(\left( { - 5{\rm{ }};{\rm{ }} + \infty } \right)\) chứa x = 4

Vì \(\mathop {\lim }\limits_{x \to 4} f\left( x \right) = \mathop {\lim }\limits_{x \to 4} \sqrt {x + 5}  = 3 = f\left( 4 \right)\) nên \(f\left( x \right)\) liên tục tại x = 4

b)     Hàm số:  \(g\left( x \right) = \left\{ \matrix{
{{x - 1} \over {\sqrt {2 - x} - 1}},\,\,{\rm{ nếu }}\,\,x \le 1 \hfill \cr 
- 2x{\rm{ ,\,\, nếu }}\,\,x \ge 1 \hfill \cr} \right.\) tại x = 1 có tập xác định là R

Ta có, \(g\left( 1 \right) =  - 2\)        (1)

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {{x - 1} \over {\sqrt {2 - x} - 1}} \cr
& = \mathop {\lim }\limits_{x \to {1^ - }} {{\left( {x - 1} \right)\left( {\sqrt {2 - x} + 1} \right)} \over {1 - x}} \cr
& = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - \sqrt {2 - x} - 1} \right) = - 2 \cr}\)         (2)

\(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( { - 2x} \right) =  - 2\)        (3)

Từ (1), (2) và (3) suy ra \(\mathop {\lim }\limits_{x \to 1} g\left( x \right) =  - 2 = g\left( 1 \right)\)

Vậy g(x) liên tục tại x = 1

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan