Cho hai mặt phẳng:
(P1): 2x + y + 2z +1 = 0 và (P2): 4x – 2y – 4z + 7 = 0.
Lập phương trình mặt phẳng sao cho khoảng cách từ mỗi điểm của nó đến (P1) và (P2) là bằng nhau.
Hướng dẫn làm bài:
Ta có: \(M(x,y,z) \in (P) \Leftrightarrow d(M,({P_1})) = d(M,({P_2}))\)
\(\Leftrightarrow {{|2x + y + 2z + 1|} \over {\sqrt {4 + 1 + 4} }} = {{|4x - 2y - 4z + 7|} \over {\sqrt {16 + 4 + 16} }}\)
\(\Leftrightarrow 2|2x + y + 2z + 1| = |4x - 2y - 4z + 7|\)
\(\Leftrightarrow \left[ {\matrix{{4x + 2y + 4z + 2 = 4x - 2y - 4z + 7} \cr {4x + 2y + 4z + 2 = - (4x - 2y - 4z + 7)} \cr} } \right.\)
\(\Leftrightarrow \left[ {\matrix{{4y + 8z - 5 = 0} \cr {8x + 9 = 0} \cr} } \right.\)
Từ đó suy ra phương trình mặt phẳng phải tìm là: \(4y + 8z – 5 = 0\) hoặc \(8x + 9 = 0\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục