Loigiaihay.com 2019

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 3.68 trang 134 sách bài tập (SBT) – Hình học 12

Bình chọn:
4 trên 2 phiếu

Trong không gian Oxyz, cho bốn điểm A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0). Gọi (S) là mặt cầu đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.

Trong không gian Oxyz, cho bốn điểm  A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0). Gọi (S) là mặt cầu  đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.

Hướng dẫn làm bài:

Tâm I(x, y, z) của (S) có tọa độ là nghiệm của hệ phương trình

 \(\left\{ {\matrix{{I{A^2} = I{B^2}} \cr {I{A^2} = I{C^2}} \cr {I{A^2} = I{D^2}} \cr} } \right. \)

\(\Leftrightarrow  \left\{ {\matrix{{{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {x^2} + {{(y - 1)}^2} + {{(z - 6)}^2}} \cr {{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {{(x - 2)}^2} + {y^2} + {{(z + 1)}^2}} \cr {{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {{(x - 4)}^2} + {{(y - 1)}^2} + {z^2}} \cr} } \right.\)

\( \Leftrightarrow  \left\{ {\matrix{{12x - 6y - 6z = 12} \cr {8x - 4y + 8z = 44} \cr {4x - 6y + 6z = 32} \cr} } \right.\)

\(\Leftrightarrow  \left\{ {\matrix{{2x - y - z = 2} \cr {2x - y + 2z = 11} \cr {2x - 3y + 3z = 16} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x = 2} \cr {y = - 1} \cr {z = 3} \cr} } \right.\)

Vậy mặt cầu (S) có tâm I(2; -1; 3).

Mặt phẳng \((\alpha )\) tiếp xúc với (S) tại A nên  \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow {IA}  = (4; - 1;0)\)

Phương trình mặt phẳng  \((\alpha )\) là

\(4(x – 6) – (y  +2) = 0\)  hay  \(4x – y – 26 = 0.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.

Bài viết liên quan