Trong không gian Oxyz, cho bốn điểm A(6; -2; 3), B(0; 1; 6), C(2; 0 ; -1), D(4; 1; 0). Gọi (S) là mặt cầu đi qua bốn điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A.
Hướng dẫn làm bài:
Tâm I(x, y, z) của (S) có tọa độ là nghiệm của hệ phương trình
\(\left\{ {\matrix{{I{A^2} = I{B^2}} \cr {I{A^2} = I{C^2}} \cr {I{A^2} = I{D^2}} \cr} } \right. \)
\(\Leftrightarrow \left\{ {\matrix{{{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {x^2} + {{(y - 1)}^2} + {{(z - 6)}^2}} \cr {{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {{(x - 2)}^2} + {y^2} + {{(z + 1)}^2}} \cr {{{(x - 6)}^2} + {{(y + 2)}^2} + {{(z - 3)}^2} = {{(x - 4)}^2} + {{(y - 1)}^2} + {z^2}} \cr} } \right.\)
\( \Leftrightarrow \left\{ {\matrix{{12x - 6y - 6z = 12} \cr {8x - 4y + 8z = 44} \cr {4x - 6y + 6z = 32} \cr} } \right.\)
\(\Leftrightarrow \left\{ {\matrix{{2x - y - z = 2} \cr {2x - y + 2z = 11} \cr {2x - 3y + 3z = 16} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x = 2} \cr {y = - 1} \cr {z = 3} \cr} } \right.\)
Vậy mặt cầu (S) có tâm I(2; -1; 3).
Mặt phẳng \((\alpha )\) tiếp xúc với (S) tại A nên \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow {IA} = (4; - 1;0)\)
Phương trình mặt phẳng \((\alpha )\) là
\(4(x – 6) – (y +2) = 0\) hay \(4x – y – 26 = 0.\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục