Một mặt phẳng \(\left( \alpha \right)\) đi qua hai đường sinh của hình nón, cắt mặt đáy hình nón theo một dây cung có độ dài gấp k lần đường cao hình nón. Tính góc \(\varphi \) giữa mặt phẳng \(\left( \alpha \right)\) và mặt đáy hình nón nếu \(\varphi \) bằng nửa góc tạo bởi hai đường sinh của hình nón nằm trên mp(\(\alpha \)).
Giải
Giả sử O là tâm của đáy hình nón và mặt phẳng \(\left( \alpha \right)\) đi qua hai đường sinh SA, SB.
Gọi I là trung điểm của AB thì \(OI \bot AB\) và \(SI \bot AB,\) từ đó \(\widehat {SIO}\) = \(\varphi \). Theo giả thiết \(\varphi \) = \(\widehat {ISB}\).
Từ tam giác vuông SIO, ta có \(\sin \varphi = {{SO} \over {SI}}\;\;\;\;\;\;\;\;\;\;\;\;\,(1)\)
Từ tam giác vuông SIB, ta cũng có \(\tan \varphi = {{IB} \over {SI}}\;\;\;\;\;(2)\)
Từ (1) và (2) suy ra \({{\sin \varphi } \over {\tan \varphi }} = {{SO} \over {IB}} = {{SO} \over {{k \over 2}SO}} = {2 \over k}.\)
Vậy \(\cos \varphi = {2 \over k}.\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục