Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 42 trang 62 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho hình nón đỉnh S, đường cao SO.

Cho hình nón đỉnh S, đường cao SO. Gọi AB là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O dến AB bằng a và \(\widehat {SAO}\) = 300, \(\widehat {SAB}\) = 600. Tính diện tích xung quanh hình nón.

Giải

Gọi \(I\) là trung điểm của AB thì \(OI \bot AB,SI \bot AB,OI = a.\) Ta có

\(AO = SA\cos \) \(\widehat {SAO} ={{\sqrt 3 } \over 2}SA.\)

\(AI = SA\cos \) \(\widehat {SAI} ={1 \over 2}SA.\)

Từ đó \({{AI} \over {AO}} = {1 \over {\sqrt 3 }}.\) Mặt khác \({{AI} \over {AO}} = \cos \widehat {IAO}\)

\( \Rightarrow \sin \widehat {IAO} ={{\sqrt 6 } \over 3} = {a \over {OA}}.\)

Vậy \(OA = {{3a} \over {\sqrt 6 }} = {{a\sqrt 6 } \over 2}.\)

Xét tam giác SAO, ta có \(SA = {{OA} \over {\cos {{30}^0}}} = {{a\sqrt 6 } \over 2}.{2 \over {\sqrt 3 }} = a\sqrt 2 .\)

Từ đó diện tích xung quanh của hình nón đã cho là

\({S_{xq}} = \pi .OA.SA = \pi .{{a\sqrt 6 } \over 2}.a\sqrt 2  = \pi {a^2}\sqrt 3 .\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan