Xác định a để \(f'\left( x \right) > 0\forall x \in R,\) biết rằng
\(f\left( x \right) = {x^3} + \left( {a - 1} \right){x^2} + 2x + 1.\)
Giải :
\(f'\left( x \right) = 3{x^2} + 2\left( {a - 1} \right)x + 2.\)
\(\Delta ' = {\left( {a - 1} \right)^2} - 6 = {a^2} - 2a - 5.\) Ta phải có
\(\Delta ' < 0 \Leftrightarrow {a^2} - 2a - 5 < 0 \Leftrightarrow 1 - \sqrt 6 < a < 1 + \sqrt 6 .\)
Vậy \(f'\left( x \right) > 0\) với mọi \(x \in R\) nếu \(1 - \sqrt 6 < a < 1 + \sqrt 6 .\)
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục