Xác định a để \(g'\left( x \right) \ge 0\forall x \in R,\) biết rằng
\(g\left( x \right) = \sin x - a\sin 2x - {1 \over 3}\sin 3x + 2ax.\)
Giải :
\(\eqalign{
& g'\left( x \right) = \cos x - 2a\cos 2x - \cos 3x + 2a \cr
& {\rm{ }} = 4a{\sin ^2}x + 2\sin x\sin 2x \cr
& {\rm{ }} = 4a{\sin ^2}x + 4{\sin ^2}x\cos x \cr
& {\rm{ }} = 4{\sin ^2}x\left( {a + \cos x} \right). \cr} \)
Rõ ràng với a > 1 thì \(a + \cos x > 0\) và \({\sin ^2}x \ge 0\) với mọi \(x \in R\) nên với a > 1 thì \(g'\left( x \right) \ge 0,\forall x \in R.\)
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục