Trong không gian tọa độ Oxyz cho hai đường thẳng \(\Delta \) và \(\Delta '\),trong đó \(\Delta \) là giao tuyến của hai mặt phẳng :
\(\left( \alpha \right):2x + y + 1 = 0\) và \(\left( \beta \right):x - y + z - 1 = 0.\)
\(\Delta '\) là giao tuyến của hai mặt phẳng :
\(\left( {\alpha '} \right):3x + y - z + 3 = 0\) và \(\left( {\beta '} \right):2x - y + 1 = 0.\)
a) Chứng minh \(\Delta \) và \(\Delta '\) cắt nhau.
b) Viết phương trình chính tắc của các đường phân giác của các góc tạo bởi \(\Delta \) và \(\Delta '\).
Giải
a) Giải hệ gồm phương trình các mặt phẳng xác định \(\Delta \) và \(\Delta '\), ta có một nghiệm duy nhất.
\(\left\{ \matrix{ x = - {1 \over 2} \hfill \cr y = 0 \hfill \cr z = {3 \over 2}. \hfill \cr} \right.\)
Vậy \(\Delta \) và \(\Delta '\) cắt nhau tại điểm \(I\left( { - {1 \over 2};0;{3 \over 2}} \right)\).
b) Ta chọn một điểm thuộc \(\Delta \), có thể lấy \(A = \left( {0; - 1;0} \right) \in \Delta .\)
Chọn một điểm thuộc \(\Delta '\), có thể lấy \(B = \left( {0;1;4} \right) \in \Delta '.\)
Khi đó, vectơ chỉ phương đơn vị của \(\Delta \) là \(\overrightarrow e = {{\overrightarrow {IA} } \over {\left| {\overrightarrow {IA} } \right|}}\).
vectơ chỉ phương đơn vị của \(\Delta '\) là \(\overrightarrow e = {{\overrightarrow {IB} } \over {\left| {\overrightarrow {IB} } \right|}}\).
Suy ra \(\overrightarrow {{e_1}} = \left( {{1 \over {\sqrt {14} }};{{ - 2} \over {\sqrt {14} }};{{ - 3} \over {\sqrt {14} }}} \right)\)
\(\overrightarrow {{e_2}} = \left( {{1 \over {\sqrt {30} }};{2 \over {\sqrt {30} }};{5 \over {\sqrt {30} }}} \right)\)
Ta có \(\overrightarrow {{e_1}} + \overrightarrow {{e_2}} \),\(\overrightarrow {{e_1}} - \overrightarrow {{e_2}} \) là các vectơ chỉ phương của cặp đường phân giác của các góc tạo bởi \(\Delta \) và \(\Delta '\).
Vậy phương trình chính tắc của cặp đường phân giác là :
\(\eqalign{ & \;\;\;\;\;{{x + {1 \over 2}} \over {{1 \over {\sqrt {14} }} + {1 \over {\sqrt {30} }}}} = {y \over {{{ - 2} \over {\sqrt {14} }} + {2 \over {\sqrt {30} }}}} = {{z - {3 \over 2}} \over {{{ - 3} \over {\sqrt {14} }} + {5 \over {\sqrt {30} }}}} \cr &\text{và}\cr& \;\;\;\;\;{{x + {1 \over 2}} \over {{1 \over {\sqrt {14} }} - {1 \over {\sqrt {30} }}}} = {y \over {{{ - 2} \over {\sqrt {14} }} - {2 \over {\sqrt {30} }}}} = {{z - {3 \over 2}} \over {{{ - 3} \over {\sqrt {14} }} - {5 \over {\sqrt {30} }}}} \cr} \)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục