Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 73 trang 134 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

a)Tìm tọa độ điểm đối xứng của M0(2;-3;1) qua mặt phẳng

a) Tìm tọa độ điểm đối xứng của M0(2;-3;1) qua mặt phẳng \(\left( \alpha  \right):x + 3y - z + 2 = 0.\)

b) Tìm tọa độ điểm đối xứng của A(0;0;1) qua mặt phẳng

\(6x + 3y + 2z - 6 = 0.\)

c) Tìm tọa độ điểm đối xứng của B(2;3;5) qua mặt phẳng

\(2x + 3y + z - 17 = 0.\)

Giải

a) Trước hết, ta xác định hình chiếu vuông góc H của M0 trên (\(\alpha \)). Gọi d là đường thẳng qua M0 và vuông góc với (\(\alpha \)), ta có

                             \(d:\left\{ \matrix{  x = 2 + t \hfill \cr  y =  - 3 + 3t \hfill \cr  z = 1 - t. \hfill \cr}  \right.\)

Toạ độ điểm H(x; y; z) thoả mãn hệ :

            \(\left\{ \matrix{  x = 2 + t \hfill \cr  y =  - 3 + 3t \hfill \cr  z = 1 - t \hfill \cr  x + 3y - z + 2 = 0 \hfill \cr}  \right. \Rightarrow H = \left( {{{28} \over {11}}; - {{15} \over {11}};{5 \over {11}}} \right).\)

Gọi M' là điểm đối xứng của M0 qua mặt phẳng (\(\alpha \)) thì H là trung điểm của M0M' nên ta có :

             \(\left\{ \matrix{  {{{x_{M'}} + 2} \over 2} = {{28} \over {11}} \hfill \cr  {{{y_{M'}} - 3} \over 2} =  - {{15} \over {11}} \hfill \cr  {{{z_{M'}} + 1} \over 2} = {5 \over {11}} \hfill \cr}  \right. \Rightarrow M' = \left( {{{34} \over {11}};{3 \over {11}}; - {1 \over {11}}} \right).\)

Tương tự

b) \(A' = \left( {{{48} \over {49}};{{24} \over {49}};{{65} \over {49}}} \right).\)

c) \(B' = \left( {{{12} \over 7};{{18} \over 7};{{34} \over 7}} \right).\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan